In this episode of the Epigenetics Podcast, we talked with Sarah Teichmann from the University of Cambridge about the Human Cell Atlas.
In the Interview we explore Sarah Teichmann's impressive career trajectory, covering her current role as Chair of Stem Cell Medicine at the Cambridge Stem Cell Institute and Vice President of Translational Research at GlaxoSmithKline. Professor Teichmann explains her unique dual appointments, a rare arrangement that allows her to bridge academia and industry effectively.
As the conversation shifts focus to computational biology, she takes us on a historical journey from her PhD work at the MRC Laboratory of Molecular Biology to the present advancements driven by next-generation sequencing and artificial intelligence methods. Professor Teichmann emphasizes that the landscape of biological research has evolved significantly, particularly in the realm of data-driven methodologies.
The conversation then transitions seamlessly into her pivotal role in advancing single-cell genomics, where she discusses the motivation behind using single-cell RNA sequencing methods in her research on T cells. This technique offered unmatched insights compared to bulk sequencing techniques, allowing for a more detailed understanding of cell states and their complex interactions within tissues.
A highlight of the episode is Professor Teichmann's insights on the Human Cell Atlas project, which she co-founded in 2017. She elaborates on the ambitious vision to map all human cells, likening the endeavor to the Human Genome Project. Through the atlas, researchers aim to create a detailed reference map that facilitates a deeper understanding of human health and disease. Professor Teichmann shares the collaborative efforts that led to its inception and the importance of international cooperation in scientific research.
The discussion culminates with an exploration of the biggest scientific findings thus far from the Human Cell Atlas. Among the revelations, she notes the astounding complexity and diversity of cell types identified, particularly within the immune system, and the unexpected locations of certain cell types during human development. She also highlights significant discoveries related to COVID-19, demonstrating the immediate real-world impact of their work.
References
Kock, K. H., Tan, L. M., Han, K. Y., Ando, Y., Jevapatarakul, D., Chatterjee, A., Lin, Q. X. X., Buyamin, E. V., Sonthalia, R., Rajagopalan, D., Tomofuji, Y., Sankaran, S., Park, M. S., Abe, M., Chantaraamporn, J., Furukawa, S., Ghosh, S., Inoue, G., Kojima, M., Kouno, T., … Prabhakar, S. (2025). Asian diversity in human immune cells. Cell, 188(8), 2288–2306.e24. https://doi.org/10.1016/j.cell.2025.02.017
Related Episodes
Contact