logo
episode-header-image
Feb 2019
48m 19s

Machine Learning In The Enterprise

Tobias Macey
About this episode

Summary

Machine learning is a class of technologies that promise to revolutionize business. Unfortunately, it can be difficult to identify and execute on ways that it can be used in large companies. Kevin Dewalt founded Prolego to help Fortune 500 companies build, launch, and maintain their first machine learning projects so that they can remain competitive in our landscape of constant change. In this episode he discusses why machine learning projects require a new set of capabilities, how to build a team from internal and external candidates, and how an example project progressed through each phase of maturity. This was a great conversation for anyone who wants to understand the benefits and tradeoffs of machine learning for their own projects and how to put it into practice.

Introduction

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. Go to dataengineeringpodcast.com/linode today to get a $20 credit and launch a new server in under a minute.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch.
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat
  • Your host is Tobias Macey and today I’m interviewing Kevin Dewalt about his experiences at Prolego, building machine learning projects for Fortune 500 companies

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • For the benefit of software engineers and team leaders who are new to machine learning, can you briefly describe what machine learning is and why is it relevant to them?
  • What is your primary mission at Prolego and how did you identify, execute on, and establish a presence in your particular market?
    • How much of your sales process is spent on educating your clients about what AI or ML are and the benefits that these technologies can provide?
  • What have you found to be the technical skills and capacity necessary for being successful in building and deploying a machine learning project?
    • When engaging with a client, what have you found to be the most common areas of technical capacity or knowledge that are needed?
  • Everyone talks about a talent shortage in machine learning. Can you suggest a recruiting or skills development process for companies which need to build out their data engineering practice?
  • What challenges will teams typically encounter when creating an efficient working relationship between data scientists and data engineers?
  • Can you briefly describe a successful project of developing a first ML model and putting it into production?
    • What is the breakdown of how much time was spent on different activities such as data wrangling, model development, and data engineering pipeline development?
    • When releasing to production, can you share the types of metrics that you track to ensure the health and proper functioning of the models?
    • What does a deployable artifact for a machine learning/deep learning application look like?
  • What basic technology stack is necessary for putting the first ML models into production?
    • How does the build vs. buy debate break down in this space and what products do you typically recommend to your clients?
  • What are the major risks associated with deploying ML models and how can a team mitigate them?
  • Suppose a software engineer wants to break into ML. What data engineering skills would you suggest they learn? How should they position themselves for the right opportunity?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Up next
Aug 18
High Performance And Low Overhead Graphs With KuzuDB
SummaryIn this episode of the Data Engineering Podcast Prashanth Rao, an AI engineer at KuzuDB, talks about their embeddable graph database. Prashanth explains how KuzuDB addresses performance shortcomings in existing solutions through columnar storage and novel join algorithms. ... Show More
1h 1m
Aug 12
Bridging Data and Decision-Making: AI's Role in Modern Analytics
SummaryIn this episode of the Data Engineering Podcast Lucas Thelosen and Drew Gilson from Gravity talk about their development of Orion, an autonomous data analyst that bridges the gap between data availability and business decision-making. Lucas and Drew share their backgrounds ... Show More
1h 10m
Aug 5
From Bits to Tables: The Evolution of S3 Storage
SummaryIn this episode of the Data Engineering Podcast Andy Warfield talks about the innovative functionalities of S3 Tables and Vectors and their integration into modern data stacks. Andy shares his journey through the tech industry and his role at Amazon, where he collaborates ... Show More
50m 8s
Recommended Episodes
Mar 2022
Bayesian Machine Learning with Ravin Kumar (Ep. 191)
This is one episode where passion for math, statistics and computers are merged. I have a very interesting conversation with Ravin,  data scientist at Google where he uses data to inform decisions. He has previously worked at Sweetgreen, designing systems that would benefit team ... Show More
31m 12s
Jul 2016
Building to Scale: How Yahoo! Turns Machine Learning into Company-Wide Systems
Many employers (and employees) are familiar with the ‘painful’ learning curves of using multiple software products or platforms at once, but these may not be gripes you want to share with Amotz Maimon. This week, we feature an interview recorded at Yahoo headquarters with its Chi ... Show More
25m 57s
May 2024
If LLMs Do the Easy Programming Tasks - How are Junior Developers Trained? What Have We Done?
In this podcast Michael Stiefel spoke to Anthony Alford and Roland Meertens about the future of software development and the training of new developers, in a world where Large Language Models heavily contribute to software development. Read a transcript of this interview: https:/ ... Show More
51m 27s
Dec 2022
Machine learning is physics (Ep. 211)
What if we borrowed from physics some theories that would interpret deep learning and machine learning in general? Here is a list of plausible ways to interpret our beloved ML models and understand why they works, or they don't. Enjoy the show! Our Sponsors NordPass Business has ... Show More
23m 54s
Apr 2024
Special Series: Tech at Work
Managing technology has never been more challenging. HBR IdeaCast’s new special series, Tech at Work, offers research, stories, and advice to make technology work for you and your team. Listen every other Thursday starting May 2 in the HBR IdeaCast feed, after the regular Tuesday ... Show More
2m 26s
May 2024
Tech at Work: What GenAI Means for Companies Right Now
Managing technology has never been more challenging. HBR IdeaCast’s new special series, Tech at Work, offers research, stories, and advice to make technology work for you and your team. This week: how your team can get the most out of working with generative AI. 
37m 20s
Apr 2021
You are the product [RB] (Ep. 147)
In this episode I am with George Hosu from Cerebralab and we speak about how dangerous it is not to pay for the services you use, and as a consequence how dangerous it is letting an algorithm decide what you like or not.   Our Sponsors This episode is supported by Chapman’s Schmi ... Show More
45m 4s
Jul 2020
Nora Jones on Resilience Engineering, Mental Models, and Learning from Incidents
In this podcast, Nora Jones, Co-Founder and CEO at Jeli and co-author of O’Reilly’s “Chaos Engineering: System Resiliency in Practice”, sat down with InfoQ podcast co-host Daniel Bryant. Topics discussed included: chaos engineering and resilience engineering, planning and running ... Show More
36 m