logo
episode-header-image
Aug 18
1h 1m

High Performance And Low Overhead Graphs...

Tobias Macey
About this episode
Summary
In this episode of the Data Engineering Podcast Prashanth Rao, an AI engineer at KuzuDB, talks about their embeddable graph database. Prashanth explains how KuzuDB addresses performance shortcomings in existing solutions through columnar storage and novel join algorithms. He discusses the usability and scalability of KuzuDB, emphasizing its open-source nature and potential for various graph applications. The conversation explores the growing interest in graph databases due to their AI and data engineering applications, and Prashanth highlights KuzuDB's potential in edge computing, ephemeral workloads, and integration with other formats like Iceberg and Parquet.


Announcements
  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.
  • Your host is Tobias Macey and today I'm interviewing Prashanth Rao about KuzuDB, an embeddable graph database
Interview
  • Introduction
  • How did you get involved in the area of data management?
  • Can you describe what KuzuDB is and the story behind it?
  • What are the core use cases that Kuzu is focused on addressing?
    • What is explicitly out of scope?
  • Graph engines have been available and in use for a long time, but generally for more niche use cases. How would you characterize the current state of the graph data ecosystem?
  • You note scalability as a feature of Kuzu, which is a phrase with many potential interpretations. Typically horizontal scaling of graphs has been complicated, in what sense does Kuzu make that claim?
  • Can you describe some of the typical architecture and integration patterns of Kuzu?
    • What are some of the more interesting or esoteric means of architecting with Kuzu?
  • For cases where Kuzu is rendering a graph across an external data repository (e.g. Iceberg, etc.), what are the patterns for balancing data freshness with network/compute efficiency? (e.g. read and create every time or persist the Kuzu state)
  • Can you describe the internal architecture of Kuzu and key design factors?
    • What are the benefits and tradeoffs of using a columnar store with adjacency lists vs. a more graph-native storage format?
  • What are the most interesting, innovative, or unexpected ways that you have seen Kuzu used?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while working on Kuzu?
  • When is Kuzu the wrong choice?
  • What do you have planned for the future of Kuzu?
Contact Info
Parting Question
  • From your perspective, what is the biggest gap in the tooling or technology for data management today?
Links
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Up next
Oct 5
The Data Model That Captures Your Business: Metric Trees Explained
SummaryIn this episode of the Data Engineering Podcast Vijay Subramanian, founder and CEO of Trace, talks about metric trees - a new approach to data modeling that directly captures a company's business model. Vijay shares insights from his decade-long experience building data pr ... Show More
1h 1m
Sep 28
From GPUs-as-a-Service to Workloads-as-a-Service: Flex AI’s Path to High-Utilization AI Infra
SummaryIn this crossover episode of the AI Engineering Podcast, host Tobias Macey interviews Brijesh Tripathi, CEO of Flex AI, about revolutionizing AI engineering by removing DevOps burdens through "workload as a service". Brijesh shares his expertise from leading AI/HPC archite ... Show More
56m 31s
Sep 18
From RAG to Relational: How Agentic Patterns Are Reshaping Data Architecture
SummaryIn this episode of the AI Engineering Podcast Mark Brooker, VP and Distinguished Engineer at AWS, talks about how agentic workflows are transforming database usage and infrastructure design. He discusses the evolving role of data in AI systems, from traditional models to m ... Show More
52m 58s
Recommended Episodes
Feb 2025
LLMs and Graphs Synergy
In this episode, Garima Agrawal, a senior researcher and AI consultant, brings her years of experience in data science and artificial intelligence. Listeners will learn about the evolving role of knowledge graphs in augmenting large language models (LLMs) for domain-specific task ... Show More
34m 47s
Jul 2022
IoT, IIoT and Managing Edge Data
Brian Gilmore (@BrianMGilmore, Director IoT/Emerging Technology @InfluxDB) talks about Edge and Industrial Edge Computing, as well as application and data challenges at the edge.SHOW: 634CLOUD NEWS OF THE WEEK - http://bit.ly/cloudcast-cnotwCHECK OUT OUR NEW PODCAST - "CLOUDCAST ... Show More
35m 37s
Mar 2025
#295 How To Get Hired As A Data Or AI Engineer with Deepak Goyal, CEO & Founder at Azurelib Academy
The role of data and AI engineers is more critical than ever. With organizations collecting massive amounts of data, the challenge lies in building efficient data infrastructures that can support AI systems and deliver actionable insights. But what does it take to become a succes ... Show More
52m 27s
Jun 2023
AI trends: a Latent Space crossover
Daniel had the chance to sit down with @swyx and Alessio from the Latent Space pod in SF to talk about current AI trends and to highlight some key learnings from past episodes. The discussion covers open access LLMs, smol models, model controls, prompt engineering, and LLMOps. Th ... Show More
59m 39s
Jan 2025
3164: Breaking Data Silos: How Hammerspace is Powering AI Storage and Hybrid Cloud
As part of the IT Press Tour in Silicon Valley, I had the opportunity to sit down with David Flynn, CEO of Hammerspace, to explore how the company is redefining the future of enterprise data storage. At a time when AI-driven workloads and hybrid cloud computing are pushing storag ... Show More
24m 26s
Apr 2025
Specialized AI brains for physical industry
Everyone wants a piece of general purpose models. Instacart has deployed ChatGPT for recipes and meal planning. The Mayo Clinic is using it to summarize patient records. Schneider Electric is using an OpenAI LLM to generate sustainability reports. With such powerful models, what’ ... Show More
39m 2s
Feb 2017
MLG 001 Introduction
Show notes: ocdevel.com/mlg/1. MLG teaches the fundamentals of machine learning and artificial intelligence. It covers intuition, models, math, languages, frameworks, etc. Where your other ML resources provide the trees, I provide the forest. Consider MLG your syllabus, with high ... Show More
8m 11s
Jan 2025
Fraud Detection with Graphs
In this episode, Šimon Mandlík, a PhD candidate at the Czech Technical University will talk with us about leveraging machine learning and graph-based techniques for cybersecurity applications. We'll learn how graphs are used to detect malicious activity in networks, such as ident ... Show More
37m 23s
Aug 13
Enterprise AI Platforms
Shay Levi (@shaylevi2, CEO @UnframeAI) & Larissa Schneider (COO @UnframeAI) discuss the complexities of building an enterprise-grade AI platform. Topics include what an AI platform is, the advantages of adoption, and the efficiencies gained.SHOW: 949SHOW TRANSCRIPT: The Cloudcast ... Show More
27m 2s
Sep 2024
AI is more than GenAI
GenAI is often what people think of when someone mentions AI. However, AI is much more. In this episode, Daniel breaks down a history of developments in data science, machine learning, AI, and GenAI in this episode to give listeners a better mental model. Don’t miss this one if y ... Show More
40m 3s