logo
episode-header-image
Aug 5
50m 8s

From Bits to Tables: The Evolution of S3...

Tobias Macey
About this episode
Summary
In this episode of the Data Engineering Podcast Andy Warfield talks about the innovative functionalities of S3 Tables and Vectors and their integration into modern data stacks. Andy shares his journey through the tech industry and his role at Amazon, where he collaborates to enhance storage capabilities, discussing the evolution of S3 from a simple storage solution to a sophisticated system supporting advanced data types like tables and vectors crucial for analytics and AI-driven applications. He explains the motivations behind introducing S3 Tables and Vectors, highlighting their role in simplifying data management and enhancing performance for complex workloads, and shares insights into the technical challenges and design considerations involved in developing these features. The conversation explores potential applications of S3 Tables and Vectors in fields like AI, genomics, and media, and discusses future directions for S3's development to further support data-driven innovation.

Announcements
  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • Tired of data migrations that drag on for months or even years? What if I told you there's a way to cut that timeline by up to 6x while guaranteeing accuracy? Datafold's Migration Agent is the only AI-powered solution that doesn't just translate your code; it validates every single data point to ensure perfect parity between your old and new systems. Whether you're moving from Oracle to Snowflake, migrating stored procedures to dbt, or handling complex multi-system migrations, they deliver production-ready code with a guaranteed timeline and fixed price. Stop burning budget on endless consulting hours. Visit dataengineeringpodcast.com/datafold to book a demo and see how they're turning months-long migration nightmares into week-long success stories.
  • Your host is Tobias Macey and today I'm interviewing Andy Warfield about S3 Tables and Vectors
Interview
  • Introduction
  • How did you get involved in the area of data management?
  • Can you describe what your goals are with the Tables and Vector features of S3?
  • How did the experience of building S3 Tables inform your work on S3 Vectors?
  • There are numerous implementations of vector storage and search. How do you view the role of S3 in the context of that ecosystem?
  • The most directly analogous implementation that I'm aware of is the Lance table format. How would you compare the implementation and capabilities of Lance with what you are building with S3 Vectors?
    • What opportunity do you see for being able to offer a protocol compatible implementation similar to the Iceberg compatibility that you provide with S3 Tables?
  • Can you describe the technical implementation of the Vectors functionality in S3?
    • What are the sources of inspiration that you looked to in designing the service?
  • Can you describe some of the ways that S3 Vectors might be integrated into a typical AI application?
  • What are the most interesting, innovative, or unexpected ways that you have seen S3 Tables/Vectors used?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while working on S3 Tables/Vectors?
  • When is S3 the wrong choice for Iceberg or Vector implementations?
  • What do you have planned for the future of S3 Tables and Vectors?
Contact Info
Parting Question
  • From your perspective, what is the biggest gap in the tooling or technology for data management today?
Closing Announcements
  • Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com with your story.
Links
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Up next
Jul 28
Revolutionizing Python Notebooks with Marimo
SummaryIn this episode of the Data Engineering Podcast Akshay Agrawal from Marimo discusses the innovative new Python notebook environment, which offers a reactive execution model, full Python integration, and built-in UI elements to enhance the interactive computing experience. ... Show More
51m 56s
Jul 21
Warehouse Native Incremental Data Processing With Dynamic Tables And Delayed View Semantics
SummaryIn this episode of the Data Engineering Podcast Dan Sotolongo from Snowflake talks about the complexities of incremental data processing in warehouse environments. Dan discusses the challenges of handling continuously evolving datasets and the importance of incremental dat ... Show More
55m 7s
Jul 15
Streamlining Data Pipelines with MCP Servers and Vector Engines
SummaryIn this episode of the Data Engineering Podcast Kacper Łukawski from Qdrant about integrating MCP servers with vector databases to process unstructured data. Kacper shares his experience in data engineering, from building big data pipelines in the automotive industry to le ... Show More
52m 4s
Recommended Episodes
Aug 5
911: The Future of Python Notebooks is Here, with Marimo’s Dr. Akshay Agrawal
Reproducibility, Python notebooks, and data science communities: Software developer Akshay Agrawal speaks to Jon Krohn about Marimo, the next-generation computational notebook for Python, how he built and fostered a thriving community around the product, and what makes this noteb ... Show More
58m 20s
Dec 2024
#491: DuckDB and Python: Ducks and Snakes living together
Join me for an insightful conversation with Alex Monahan, who works on documentation, tutorials, and training at DuckDB Labs. We explore why DuckDB is gaining momentum among Python and data enthusiasts, from its in-process database design to its blazingly fast, columnar architect ... Show More
1h 2m
Feb 2025
#495: OSMnx: Python and OpenStreetMap
On this episode, I’m joined by Dr. Jeff Boeing, an assistant professor at the University of Southern California whose research spans urban planning, spatial analysis, and data science. We explore why OpenStreetMap is such a powerful source of global map data—and how Jeff’s Python ... Show More
1h 1m
Mar 2017
MetPy: Taming The Weather With Python
Summary What’s the weather tomorrow? That’s the question that meteorologists are always trying to get better at answering. This week the developers of MetPy discuss how their project is used in that quest and the challenges that are inherent in atmospheric and weather research. I ... Show More
52m 23s
Jun 2023
AI trends: a Latent Space crossover
Daniel had the chance to sit down with @swyx and Alessio from the Latent Space pod in SF to talk about current AI trends and to highlight some key learnings from past episodes. The discussion covers open access LLMs, smol models, model controls, prompt engineering, and LLMOps. Th ... Show More
59m 39s
Dec 2024
#489: Anaconda Toolbox for Excel and more with Peter Wang
Peter Wang has been pushing Python forward since the early days of its data science roots. We're lucky to have him back on the show. We're going to talk about the Anaconda Toolbox for Excel as well as many other trends and topics that are hot in the Python space right now. I'm su ... Show More
1h 9m
Mar 2023
#408: Hatch: A Modern Python Workflow
See the full show notes for this episode on the website at talkpython.fm/408 
1h 2m
May 8
MLG 035 Large Language Models 2
At inference, large language models use in-context learning with zero-, one-, or few-shot examples to perform new tasks without weight updates, and can be grounded with Retrieval Augmented Generation (RAG) by embedding documents into vector databases for real-time factual lookup ... Show More
45m 25s
Feb 2025
MATLAB vs. Python vs. Julia: The Hidden Truths - Gareth Thomas | Podcast #147
🌎 More about Versionbay: https://www.versionbay.com/Connect with Gareth on LinkedIn: https://www.linkedin.com/in/g-thomas/In this episode, we sit down with Gareth Thomas, founder of VersionBay, to explore the critical role of software versioning in engineering and how companies ... Show More
32m 57s
May 2023
675: Pandas for Data Analysis and Visualization
Wrangling data in Pandas, when to use Pandas, Matplotlib or Seaborn, and why you should learn to create Python packages: Jon Krohn speaks with guest Stefanie Molin, author of Hands-On Data Analysis with Pandas.This episode is brought to you by Posit, the open-source data science ... Show More
1h 8m