logo
episode-header-image
Aug 12
1h 10m

Bridging Data and Decision-Making: AI's ...

Tobias Macey
About this episode
Summary
In this episode of the Data Engineering Podcast Lucas Thelosen and Drew Gilson from Gravity talk about their development of Orion, an autonomous data analyst that bridges the gap between data availability and business decision-making. Lucas and Drew share their backgrounds in data analytics and how their experiences have shaped their approach to leveraging AI for data analysis, emphasizing the potential of AI to democratize data insights and make sophisticated analysis accessible to companies of all sizes. They discuss the technical aspects of Orion, a multi-agent system designed to automate data analysis and provide actionable insights, highlighting the importance of integrating AI into existing workflows with accuracy and trustworthiness in mind. The conversation also explores how AI can free data analysts from routine tasks, enabling them to focus on strategic decision-making and stakeholder management, as they discuss the future of AI in data analytics and its transformative impact on businesses.

Announcements
  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.
  • Your host is Tobias Macey and today I'm interviewing Lucas Thelosen and Drew Gilson about the engineering and impact of building an autonomous data analyst
Interview
  • Introduction
  • How did you get involved in the area of data management?
  • Can you describe what Orion is and the story behind it?
    • How do you envision the role of an agentic analyst in an organizational context?
  • There have been several attempts at building LLM-powered data analysis, many of which are essentially a text-to-SQL interface. How have the capabilities and architectural patterns grown in the past ~2 years to enable a more capable system?
  • One of the key success factors for a data analyst is their ability to translate business questions into technical representations. How can an autonomous AI-powered system understand the complex nuance of the business to build effective analyses?
  • Many agentic approaches to analytics require a substantial investment in data architecture, documentation, and semantic models to be effective. What are the gradations of effectiveness for autonomous analytics for companies who are at different points on their journey to technical maturity?
  • Beyond raw capability, there is also a significant need to invest in user experience design for an agentic analyst to be useful. What are the key interaction patterns that you have found to be helpful as you have developed your system?
  • How does the introduction of a system like Orion shift the workload for data teams?
  • Can you describe the overall system design and technical architecture of Orion?
    • How has that changed as you gained further experience and understanding of the problem space?
  • What are the most interesting, innovative, or unexpected ways that you have seen Orion used?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while working on Orion?
  • When is Orion/agentic analytics the wrong choice?
  • What do you have planned for the future of Orion?
Contact Info
Parting Question
  • From your perspective, what is the biggest gap in the tooling or technology for data management today?
Closing Announcements
  • Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com with your story.
Links
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Up next
Oct 5
The Data Model That Captures Your Business: Metric Trees Explained
SummaryIn this episode of the Data Engineering Podcast Vijay Subramanian, founder and CEO of Trace, talks about metric trees - a new approach to data modeling that directly captures a company's business model. Vijay shares insights from his decade-long experience building data pr ... Show More
1h 1m
Sep 28
From GPUs-as-a-Service to Workloads-as-a-Service: Flex AI’s Path to High-Utilization AI Infra
SummaryIn this crossover episode of the AI Engineering Podcast, host Tobias Macey interviews Brijesh Tripathi, CEO of Flex AI, about revolutionizing AI engineering by removing DevOps burdens through "workload as a service". Brijesh shares his expertise from leading AI/HPC archite ... Show More
56m 31s
Sep 18
From RAG to Relational: How Agentic Patterns Are Reshaping Data Architecture
SummaryIn this episode of the AI Engineering Podcast Mark Brooker, VP and Distinguished Engineer at AWS, talks about how agentic workflows are transforming database usage and infrastructure design. He discusses the evolving role of data in AI systems, from traditional models to m ... Show More
52m 58s
Recommended Episodes
Nov 2024
#262 Self-Service Business Intelligence with Sameer Al-Sakran, CEO at Metabase
We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here.We’re often caught chasing the dream of “self-serve” data—a place where data empowers stakeholders to answer th ... Show More
51m 33s
Mar 2025
#295 How To Get Hired As A Data Or AI Engineer with Deepak Goyal, CEO & Founder at Azurelib Academy
The role of data and AI engineers is more critical than ever. With organizations collecting massive amounts of data, the challenge lies in building efficient data infrastructures that can support AI systems and deliver actionable insights. But what does it take to become a succes ... Show More
52m 27s
Apr 2025
Specialized AI brains for physical industry
Everyone wants a piece of general purpose models. Instacart has deployed ChatGPT for recipes and meal planning. The Mayo Clinic is using it to summarize patient records. Schneider Electric is using an OpenAI LLM to generate sustainability reports. With such powerful models, what’ ... Show More
39m 2s
Jul 2022
IoT, IIoT and Managing Edge Data
Brian Gilmore (@BrianMGilmore, Director IoT/Emerging Technology @InfluxDB) talks about Edge and Industrial Edge Computing, as well as application and data challenges at the edge.SHOW: 634CLOUD NEWS OF THE WEEK - http://bit.ly/cloudcast-cnotwCHECK OUT OUR NEW PODCAST - "CLOUDCAST ... Show More
35m 37s
Nov 2024
Model Plateaus and Enterprise AI Adoption with Cohere's Aidan Gomez
In this episode of No Priors, Sarah is joined by Aidan Gomez, cofounder and CEO of Cohere. Aidan reflects on his journey to co-authoring the groundbreaking 2017 paper, “Attention is All You Need,” during his internship, and shares his motivations for building Cohere, which delive ... Show More
44m 15s
Jan 2025
3164: Breaking Data Silos: How Hammerspace is Powering AI Storage and Hybrid Cloud
As part of the IT Press Tour in Silicon Valley, I had the opportunity to sit down with David Flynn, CEO of Hammerspace, to explore how the company is redefining the future of enterprise data storage. At a time when AI-driven workloads and hybrid cloud computing are pushing storag ... Show More
24m 26s
Sep 15
#321 Developing Financial AI Products at Experian with Vijay Mehta, EVP of Global Solutions & Analytics at Experian
Financial institutions are racing to harness the power of AI, but the path to implementation is filled with challenges. From feature engineering to model deployment, the technical complexities of AI adoption in finance require careful navigation of both technological and regulato ... Show More
49m 28s
Feb 2025
How Can GenAI Make Analytics More Accessible to Product Teams? (with Mario Ciabarra)
Whether you prefer the term data-driven, or data-informed, or data-dazzled, it doesn't matter—today's tech cannot survive without high quality data sets AND the tools to use them effectively. But we also can't afford to think about data as the responsibility of jus ... Show More
27m 46s
Apr 2025
Andriy Burkov - The TRUTH About Large Language Models and Agentic AI (with Andriy Burkov, Author "The Hundred-Page Language Models Book")
Andriy Burkov is a renowned machine learning expert and leader. He's also the author of (so far) three books on machine learning, including the recently-released "The Hundred-Page Language Models Book", which takes curious people from the very basics of language models all the wa ... Show More
1h 24m
Mar 2025
189. Numbers Need Narrative: Use Data to Influence and Inspire
Why numbers are only as compelling as the narratives we attach to them. Facts and figures can be your friend, but before you load your presentation full of data, Miro Kazakoff has a word of caution: “Data’s objective, but people are not.”You might think that your data speaks for ... Show More
21m 9s