About this episode
Summary
A data lakehouse is intended to combine the benefits of data lakes (cost effective, scalable storage and compute) and data warehouses (user friendly SQL interface). Multiple open source projects and vendors have been working together to make this vision a reality. In this episode Dain Sundstrom, CTO of Starburst, explains how the combination of the Trino query engine and the Iceberg table format offer the ease of use and execution speed of data warehouses with the infinite storage and scalability of data lakes.
Announcements
- Hello and welcome to the Data Engineering Podcast, the show about modern data management
- Dagster offers a new approach to building and running data platforms and data pipelines. It is an open-source, cloud-native orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. Your team can get up and running in minutes thanks to Dagster Cloud, an enterprise-class hosted solution that offers serverless and hybrid deployments, enhanced security, and on-demand ephemeral test deployments. Go to dataengineeringpodcast.com/dagster today to get started. Your first 30 days are free!
- Data lakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the data lake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics. Trusted by teams of all sizes, including Comcast and Doordash, Starburst is a data lake analytics platform that delivers the adaptability and flexibility a lakehouse ecosystem promises. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data. Want to see Starburst in action? Go to dataengineeringpodcast.com/starburst and get $500 in credits to try Starburst Galaxy today, the easiest and fastest way to get started using Trino.
- Join in with the event for the global data community, Data Council Austin. From March 26th-28th 2024, they'll play host to hundreds of attendees, 100 top speakers, and dozens of startups that are advancing data science, engineering and AI. Data Council attendees are amazing founders, data scientists, lead engineers, CTOs, heads of data, investors and community organizers who are all working togethr to build the future of data. As a listener to the Data Engineering Podcast you can get a special discount of 20% off your ticket by using the promo code dataengpod20. Don't miss out on their only event this year! Visit: dataengineeringpodcast.com/data-council today.
- Your host is Tobias Macey and today I'm interviewing Dain Sundstrom about building a data lakehouse with Trino and Iceberg
Interview
- Introduction
- How did you get involved in the area of data management?
- To start, can you share your definition of what constitutes a "Data Lakehouse"?
- What are the technical/architectural/UX challenges that have hindered the progression of lakehouses?
- What are the notable advancements in recent months/years that make them a more viable platform choice?
- There are multiple tools and vendors that have adopted the "data lakehouse" terminology. What are the benefits offered by the combination of Trino and Iceberg?
- What are the key points of comparison for that combination in relation to other possible selections?
- What are the pain points that are still prevalent in lakehouse architectures as compared to warehouse or vertically integrated systems?
- What progress is being made (within or across the ecosystem) to address those sharp edges?
- For someone who is interested in building a data lakehouse with Trino and Iceberg, how does that influence their selection of other platform elements?
- What are the differences in terms of pipeline design/access and usage patterns when using a Trino/Iceberg lakehouse as compared to other popular warehouse/lakehouse structures?
- What are the most interesting, innovative, or unexpected ways that you have seen Trino lakehouses used?
- What are the most interesting, unexpected, or challenging lessons that you have learned while working on the data lakehouse ecosystem?
- When is a lakehouse the wrong choice?
- What do you have planned for the future of Trino/Starburst?
Contact Info
Parting Question
- From your perspective, what is the biggest gap in the tooling or technology for data management today?
Closing Announcements
- Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning.
- Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
- If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story.
Links
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Sponsored By:
- Data Council: 
Join us at the top event for the global data community, Data Council Austin. From March 26-28th 2024, we'll play host to hundreds of attendees, 100 top speakers and dozens of startups that are advancing data science, engineering and AI. Data Council attendees are amazing founders, data scientists, lead engineers, CTOs, heads of data, investors and community organizers who are all working together to build the future of data and sharing their insights and learnings through deeply technical talks. As a listener to the Data Engineering Podcast you can get a special discount off regular priced and late bird tickets by using the promo code dataengpod20. Don't miss out on our only event this year! Visit [dataengineeringpodcast.com/data-council](https://www.dataengineeringpodcast.com/data-council) and use code **dataengpod20** to register today! Promo Code: dataengpod20
- Starburst: 
This episode is brought to you by Starburst - a data lake analytics platform for data engineers who are battling to build and scale high quality data pipelines on the data lake. Powered by Trino, Starburst runs petabyte-scale SQL analytics fast at a fraction of the cost of traditional methods, helping you meet all your data needs ranging from AI/ML workloads to data applications to complete analytics.
Trusted by the teams at Comcast and Doordash, Starburst delivers the adaptability and flexibility a lakehouse ecosystem promises, while providing a single point of access for your data and all your data governance allowing you to discover, transform, govern, and secure all in one place. Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data. Want to see Starburst in action? Try Starburst Galaxy today, the easiest and fastest way to get started using Trino, and get $500 of credits free. [dataengineeringpodcast.com/starburst](https://www.dataengineeringpodcast.com/starburst)
- Dagster: 
Data teams are tasked with helping organizations deliver on the premise of data, and with ML and AI maturing rapidly, expectations have never been this high. However data engineers are challenged by both technical complexity and organizational complexity, with heterogeneous technologies to adopt, multiple data disciplines converging, legacy systems to support, and costs to manage.
Dagster is an open-source orchestration solution that helps data teams reign in this complexity and build data platforms that provide unparalleled observability, and testability, all while fostering collaboration across the enterprise. With enterprise-grade hosting on Dagster Cloud, you gain even more capabilities, adding cost management, security, and CI support to further boost your teams' productivity. Go to [dagster.io](https://dagster.io/lp/dagster-cloud-trial?source=data-eng-podcast) today to get your first 30 days free!
Support Data Engineering Podcast
Oct 5
The Data Model That Captures Your Business: Metric Trees Explained
SummaryIn this episode of the Data Engineering Podcast Vijay Subramanian, founder and CEO of Trace, talks about metric trees - a new approach to data modeling that directly captures a company's business model. Vijay shares insights from his decade-long experience building data pr ... Show More
1h 1m
Sep 28
From GPUs-as-a-Service to Workloads-as-a-Service: Flex AI’s Path to High-Utilization AI Infra
SummaryIn this crossover episode of the AI Engineering Podcast, host Tobias Macey interviews Brijesh Tripathi, CEO of Flex AI, about revolutionizing AI engineering by removing DevOps burdens through "workload as a service". Brijesh shares his expertise from leading AI/HPC archite ... Show More
56m 31s
Sep 18
From RAG to Relational: How Agentic Patterns Are Reshaping Data Architecture
SummaryIn this episode of the AI Engineering Podcast Mark Brooker, VP and Distinguished Engineer at AWS, talks about how agentic workflows are transforming database usage and infrastructure design. He discusses the evolving role of data in AI systems, from traditional models to m ... Show More
52m 58s
Apr 2023
2344: Cloudera: Moving Beyond Big Data to Hybrid Data Mastery
I sit down with Chris Royles, EMEA Field CTO at Cloudera, to discuss the evolution of Big Data and why hybrid data is the next challenge for businesses to tackle. In this episode, we explore how the term 'Big Data' has become dated and how the rapid rise of hybrid data has shifte ... Show More
39m 54s
Mar 2025
#295 How To Get Hired As A Data Or AI Engineer with Deepak Goyal, CEO & Founder at Azurelib Academy
The role of data and AI engineers is more critical than ever. With organizations collecting massive amounts of data, the challenge lies in building efficient data infrastructures that can support AI systems and deliver actionable insights. But what does it take to become a succes ... Show More
52m 27s
Jan 2025
3164: Breaking Data Silos: How Hammerspace is Powering AI Storage and Hybrid Cloud
As part of the IT Press Tour in Silicon Valley, I had the opportunity to sit down with David Flynn, CEO of Hammerspace, to explore how the company is redefining the future of enterprise data storage. At a time when AI-driven workloads and hybrid cloud computing are pushing storag ... Show More
24m 26s
Sep 9
Leading across technical domains, strategic deep-dives & applying your skills in new industries w/ Simone Kalmakis #231
How do you apply your leadership skills to a new, mission-driven industry and effectively lead teams across multiple technical domains? In this episode, Simone Kalmakis (VPE @ Viam) shares her playbook for successfully transitioning between industries from health-tech and climate ... Show More
43m 17s
Jul 2022
IoT, IIoT and Managing Edge Data
Brian Gilmore (@BrianMGilmore, Director IoT/Emerging Technology @InfluxDB) talks about Edge and Industrial Edge Computing, as well as application and data challenges at the edge.SHOW: 634CLOUD NEWS OF THE WEEK - http://bit.ly/cloudcast-cnotwCHECK OUT OUR NEW PODCAST - "CLOUDCAST ... Show More
35m 37s
Sep 3
#319 Building & Managing Human+Agent Hybrid Teams with Karen Ng, Head of Product at HubSpot
The line between human work and AI capabilities is blurring in today's business environment. AI agents are now handling autonomous tasks across customer support, data management, and sales prospecting with increasing sophistication. But how do you effectively integrate these agen ... Show More
44m 31s
Mar 2025
189. Numbers Need Narrative: Use Data to Influence and Inspire
Why numbers are only as compelling as the narratives we attach to them.
Facts and figures can be your friend, but before you load your presentation full of data, Miro Kazakoff has a word of caution: “Data’s objective, but people are not.”You might think that your data speaks for ... Show More
21m 9s
Sep 18
How People Actually Use ChatGPT
This episode of AI Daily Brief dives into two important reports on how people are really using AI tools like ChatGPT and Claude. OpenAI’s massive study with Harvard and NBER reveals consumer patterns across 1.5 million conversations, while Anthropic’s Economic Index tracks broade ... Show More
27m 39s
Nov 2024
DataStax and the Future of Real-Time Data Applications with Jonathan Ellis
DataStax is known for its expertise in scalable data solutions, particularly for Apache Cassandra, a leading NoSQL database. Recently, the company has focused on enhancing platform support for AI-driven applications, including vector search capabilities.
Jonathan Ellis is the Co- ... Show More
43m 24s
Apr 2025
Specialized AI brains for physical industry
Everyone wants a piece of general purpose models. Instacart has deployed ChatGPT for recipes and meal planning. The Mayo Clinic is using it to summarize patient records. Schneider Electric is using an OpenAI LLM to generate sustainability reports. With such powerful models, what’ ... Show More
39m 2s