logo
episode-header-image
Jan 2024
50m 26s

Pushing The Limits Of Scalability And Us...

Tobias Macey
About this episode

Summary

Data processing technologies have dramatically improved in their sophistication and raw throughput. Unfortunately, the volumes of data that are being generated continue to double, requiring further advancements in the platform capabilities to keep up. As the sophistication increases, so does the complexity, leading to challenges for user experience. Jignesh Patel has been researching these areas for several years in his work as a professor at Carnegie Mellon University. In this episode he illuminates the landscape of problems that we are faced with and how his research is aimed at helping to solve these problems.

Announcements

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • Data lakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the data lake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics. Trusted by teams of all sizes, including Comcast and Doordash, Starburst is a data lake analytics platform that delivers the adaptability and flexibility a lakehouse ecosystem promises. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data. Want to see Starburst in action? Go to dataengineeringpodcast.com/starburst and get $500 in credits to try Starburst Galaxy today, the easiest and fastest way to get started using Trino.
  • Your host is Tobias Macey and today I'm interviewing Jignesh Patel about the research that he is conducting on technical scalability and user experience improvements around data management

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by summarizing your current areas of research and the motivations behind them?
  • What are the open questions today in technical scalability of data engines?
    • What are the experimental methods that you are using to gain understanding in the opportunities and practical limits of those systems?
  • As you strive to push the limits of technical capacity in data systems, how does that impact the usability of the resulting systems?
    • When performing research and building prototypes of the projects, what is your process for incorporating user experience into the implementation of the product?
  • What are the main sources of tension between technical scalability and user experience/ease of comprehension?
  • What are some of the positive synergies that you have been able to realize between your teaching, research, and corporate activities?
    • In what ways do they produce conflict, whether personally or technically?
  • What are the most interesting, innovative, or unexpected ways that you have seen your research used?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while working on research of the scalability limits of data systems?
  • What is your heuristic for when a given research project needs to be terminated or productionized?
  • What do you have planned for the future of your academic research?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

  • Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story.
  • To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Sponsored By:

Support Data Engineering Podcast

Up next
Aug 18
High Performance And Low Overhead Graphs With KuzuDB
SummaryIn this episode of the Data Engineering Podcast Prashanth Rao, an AI engineer at KuzuDB, talks about their embeddable graph database. Prashanth explains how KuzuDB addresses performance shortcomings in existing solutions through columnar storage and novel join algorithms. ... Show More
1h 1m
Aug 12
Bridging Data and Decision-Making: AI's Role in Modern Analytics
SummaryIn this episode of the Data Engineering Podcast Lucas Thelosen and Drew Gilson from Gravity talk about their development of Orion, an autonomous data analyst that bridges the gap between data availability and business decision-making. Lucas and Drew share their backgrounds ... Show More
1h 10m
Aug 5
From Bits to Tables: The Evolution of S3 Storage
SummaryIn this episode of the Data Engineering Podcast Andy Warfield talks about the innovative functionalities of S3 Tables and Vectors and their integration into modern data stacks. Andy shares his journey through the tech industry and his role at Amazon, where he collaborates ... Show More
50m 8s
Recommended Episodes
Mar 2022
Bayesian Machine Learning with Ravin Kumar (Ep. 191)
This is one episode where passion for math, statistics and computers are merged. I have a very interesting conversation with Ravin,  data scientist at Google where he uses data to inform decisions. He has previously worked at Sweetgreen, designing systems that would benefit team ... Show More
31m 12s
Feb 2023
Better Science Volume 2: Maps, Metadata, and the Pyramid
Jump in on a second episode of the Better Science series with guest host and Technical Evangelist Justin Emerson interviewing FlashArray engineer Feng Wang about how Pure maps data at scale with a single, scalable data structure. Managing storage in modern times requires a strate ... Show More
46m 3s
Mar 2022
Mining the Golden Age of Data with Tableau’s CEO & President Mark Nelson
Mark Nelson is the President and CEO of Tableau, a company dedicated to democratizing analytics and putting data back in the hands of consumers. But while this digital pioneer may be excited about the technical side of things, he’s more excited about how accessing data (and askin ... Show More
36m 32s
Jun 2021
Buying and Selling Homes Algorithmically with Opendoor’s VP of Research and Data Science, Kushal Chakrabarti
For many people, the process of buying and selling a home will undoubtedly be the most difficult decisions they will make in their lifetime. Is the price you’re paying for your home fair? Is the price you’re selling your home for an adequate sale price? For a long time, realtors ... Show More
32m 26s
Dec 2020
The Algorithms that Bring you Style with Stitch Fix’s Director of Data Science, Tatsiana Maskalevich
The old saying, “look good, feel good,'' fits Stitch Fix perfectly. The direct-to-consumer, online personal styling service has boomed due to its ability to not only match consumers with trendy and comfortable clothes, but to make it a personalized experience for each buyer.“At t ... Show More
52m 39s
Mar 2024
LLM Security and Privacy
Sean Falconer (@seanfalconer, Head of Dev Relations @SkyflowAPI, Host @software_daily) talks about security and privacy of LLMs and how to prevent PII (personally identifiable information) from leaking outSHOW: 807 CLOUD NEWS OF THE WEEK - http://bit.ly/cloudcast-cnotw NEW TO CLO ... Show More
26m 9s