logo
episode-header-image
Jun 2022
59m 2s

Bringing The Modern Data Stack To Everyo...

Tobias Macey
About this episode

Summary

Cloud services have made highly scalable and performant data platforms economical and manageable for data teams. However, they are still challenging to work with and manage for anyone who isn’t in a technical role. Hung Dang understood the need to make data more accessible to the entire organization and created Y42 as a better user experience on top of the "modern data stack". In this episode he shares how he designed the platform to support the full spectrum of technical expertise in an organization and the interesting engineering challenges involved.

Announcements

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show!
  • This episode is brought to you by Acryl Data, the company behind DataHub, the leading developer-friendly data catalog for the modern data stack. Open Source DataHub is running in production at several companies like Peloton, Optum, Udemy, Zynga and others. Acryl Data provides DataHub as an easy to consume SaaS product which has been adopted by several companies. Signup for the SaaS product at dataengineeringpodcast.com/acryl
  • RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their state-of-the-art reverse ETL pipelines enable you to send enriched data to any cloud tool. Sign up free… or just get the free t-shirt for being a listener of the Data Engineering Podcast at dataengineeringpodcast.com/rudder.
  • The most important piece of any data project is the data itself, which is why it is critical that your data source is high quality. PostHog is your all-in-one product analytics suite including product analysis, user funnels, feature flags, experimentation, and it’s open source so you can host it yourself or let them do it for you! You have full control over your data and their plugin system lets you integrate with all of your other data tools, including data warehouses and SaaS platforms. Give it a try today with their generous free tier at dataengineeringpodcast.com/posthog
  • Your host is Tobias Macey and today I’m interviewing Hung Dang about Y42, the full-stack data platform that anyone can run

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you describe what Y42 is and the story behind it?
  • How would you characterize your positioning in the data ecosystem?
  • What are the problems that you are trying to solve?
    • Who are the personas that you optimize for and how does that manifest in your product design and feature priorities?
  • How is the Y42 platform implemented?
    • What are the core engineering problems that you have had to address in order to tie together the various underlying services that you integrate?
    • How have the design and goals of the product changed or evolved since you started working on it?
  • What are the sharp edges and failure conditions that you have had to automate around in order to support non-technical users?
  • What is the process for integrating Y42 with an organization’s data systems?
    • What is the story for onboarding from existing systems and importing workflows (e.g. Airflow dags and dbt models)?
  • With your recent shift to using Git as the store of platform state, how do you approach the problem of reconciling branched changes with side effects from changes (e.g. creating tables or mutating table structures in the warehouse)?
  • Can you describe a typical workflow for building or modifying a business dashboard or activating data in the warehouse?
  • What are the interfaces and abstractions that you have built into the platform to support collaboration across roles and levels of experience? (technical or organizational)
  • With your focus on end-to-end support for data analysis, what are the extension points or escape hatches for use cases that you can’t support out of the box?
  • What are the most interesting, innovative, or unexpected ways that you have seen Y42 used?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while working on Y42?
  • When is Y42 the wrong choice?
  • What do you have planned for the future of Y42?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

  • Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story.
  • To help other people find the show please leave a review on iTunes and tell your friends and co-workers

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Sponsored By:

Support Data Engineering Podcast

Up next
Jul 6
Foundational Data Engineering At 2Sigma
SummaryIn this episode of the Data Engineering Podcast Effie Baram, a leader in foundational data engineering at Two Sigma, talks about the complexities and innovations in data engineering within the finance sector. She discusses the critical role of data at Two Sigma, balancing ... Show More
55m 5s
Jun 29
Enabling Agents In The Enterprise With A Platform Approach
SummaryIn this episode of the Data Engineering Podcast Arun Joseph talks about developing and implementing agent platforms to empower businesses with agentic capabilities. From leading AI engineering at Deutsche Telekom to his current entrepreneurial venture focused on multi-agen ... Show More
54m 18s
Jun 18
Dagster's New Era: Modularizing Data Transformation in the Age of AI
SummaryIn this episode of the Data Engineering Podcast we welcome back Nick Schrock, CTO and founder of Dagster Labs, to discuss the evolving landscape of data engineering in the age of AI. As AI begins to impact data platforms and the role of data engineers, Nick shares his insi ... Show More
1h 1m
Recommended Episodes
Mar 2022
Mining the Golden Age of Data with Tableau’s CEO & President Mark Nelson
Mark Nelson is the President and CEO of Tableau, a company dedicated to democratizing analytics and putting data back in the hands of consumers. But while this digital pioneer may be excited about the technical side of things, he’s more excited about how accessing data (and askin ... Show More
36m 32s
Oct 2023
#628: Data on EKS
Organizations use their data to make better decisions and build innovative experiences for their customers. With the exponential growth in data, and the rapid pace of innovation in machine learning (ML), there is a growing need to build modern data applications that are agile and ... Show More
20m 56s
Mar 2024
LLM Security and Privacy
Sean Falconer (@seanfalconer, Head of Dev Relations @SkyflowAPI, Host @software_daily) talks about security and privacy of LLMs and how to prevent PII (personally identifiable information) from leaking outSHOW: 807 CLOUD NEWS OF THE WEEK - http://bit.ly/cloudcast-cnotw NEW TO CLO ... Show More
26m 9s
Jan 2023
BDTP. Data Activation for SaaS with David Sepulveda
Today we have another episode of Better Done Than Perfect. Listen in as we talk to David Sepulveda, Head of Data at Kumospace. You'll learn why data analysts need to work closely with research and product teams, how to distinguish correlation from causation, how much data you nee ... Show More
33m 16s
Mar 2022
Bayesian Machine Learning with Ravin Kumar (Ep. 191)
This is one episode where passion for math, statistics and computers are merged. I have a very interesting conversation with Ravin,  data scientist at Google where he uses data to inform decisions. He has previously worked at Sweetgreen, designing systems that would benefit team ... Show More
31m 12s
May 2024
Deepthi Sigireddi on Distributed Database Architecture in the Cloud Native Era
In this podcast, Vitess CNCF project technical lead Deepthi Sigireddi discusses the architecture of cloud native distributed databases, sharding, replication, and failover. She also talks about what DB developers should consider when choosing distributed databases. Read a transcr ... Show More
37m 24s
Jun 2024
Making ETL pipelines a thing of the past
RelationalAI’s first big partner is Snowflake, meaning customers can now start using their data with GenAI without worrying about the privacy, security, and governance hassle that would come with porting their data to a new cloud provider. The company promises it can also add met ... Show More
26m 13s
Nov 2021
Time Plus Data Equals Efficiency with Paul Dix, the Founder and CTO of InfluxData and the Creator of InfluxDB
If the topic of databases is brought up to certain people, their eyes may gloss over. But if that happened, that would be because they just don’t know the awesome power of databases. Data can be valuable but only if it is contextualized, and time is an extremely relevant aspect t ... Show More
36m 4s