logo
episode-header-image
Sep 2021
1h 11m

Declarative Machine Learning Without The...

Tobias Macey
About this episode

Summary

Building, scaling, and maintaining the operational components of a machine learning workflow are all hard problems. Add the work of creating the model itself, and it’s not surprising that a majority of companies that could greatly benefit from machine learning have yet to either put it into production or see the value. Tristan Zajonc recognized the complexity that acts as a barrier to adoption and created the Continual platform in response. In this episode he shares his perspective on the benefits of declarative machine learning workflows as a means of accelerating adoption in businesses that don’t have the time, money, or ambition to build everything from scratch. He also discusses the technical underpinnings of what he is building and how using the data warehouse as a shared resource drastically shortens the time required to see value. This is a fascinating episode and Tristan’s work at Continual is likely to be the catalyst for a new stage in the machine learning community.

Announcements

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
  • Schema changes, missing data, and volume anomalies caused by your data sources can happen without any advanced notice if you lack visibility into your data-in-motion. That leaves DataOps reactive to data quality issues and can make your consumers lose confidence in your data. By connecting to your pipeline orchestrator like Apache Airflow and centralizing your end-to-end metadata, Databand.ai lets you identify data quality issues and their root causes from a single dashboard. With Databand.ai, you’ll know whether the data moving from your sources to your warehouse will be available, accurate, and usable when it arrives. Go to dataengineeringpodcast.com/databand to sign up for a free 30-day trial of Databand.ai and take control of your data quality today.
  • Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription
  • Your host is Tobias Macey and today I’m interviewing Tristan Zajonc about Continual, a platform for automating the creation and application of operational AI on top of your data warehouse

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you describe what Continual is and the story behind it?
    • What is your definition for "operational AI" and how does it differ from other applications of ML/AI?
  • What are some example use cases for AI in an operational capacity?
    • What are the barriers to adoption for organizations that want to take advantage of predictive analytics?
  • Who are the target users of Continual?
  • Can you describe how the Continual platform is implemented?
    • How has the design and infrastructure changed or evolved since you first began working on it?
  • What is the workflow for someone building a model and putting it into production?
    • Once a model has been deployed, what are the mechanisms that you expose for interacting with it?
  • How does this differ from in-database ML capabilities such as what is offered by Vertica and BigQuery?
  • How much understanding of ML/AI principles is necessary for someone to create a model with Continual?
  • What is your estimation of the impact that Continual can have on the overall productivity of a data team/data scientist?
  • What are the most interesting, innovative, or unexpected ways that you have seen Continual used?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while working on Continual?
  • When is Continual the wrong choice?
  • What do you have planned for the future of Continual?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

  • Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story.
  • To help other people find the show please leave a review on iTunes and tell your friends and co-workers
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Up next
Yesterday
Blurring Lines: Data, AI, and the New Playbook for Team Velocity
Summary<br />In this crossover episode, Max Beauchemin explores how multiplayer, multi‑agent engineering is transforming the way individuals and teams build data and AI systems. He digs into the shifting boundary between data and AI engineering, the rise of “context as code,” and ... Show More
1 h
Nov 16
State, Scale, and Signals: Rethinking Orchestration with Durable Execution
Summary&nbsp;<br />In this episode Preeti Somal, EVP of Engineering at Temporal, talks about the durable execution model and how it reshapes the way teams build reliable, stateful systems for data and AI. She explores Temporal’s code‑first programming model—workflows, activities, ... Show More
51m 46s
Nov 9
The AI Data Paradox: High Trust in Models, Low Trust in Data
Summary<br />In this episode of the Data Engineering Podcast Ariel Pohoryles, head of product marketing for Boomi's data management offerings, talks about a recent survey of 300 data leaders on how organizations are investing in data to scale AI. He shares a paradox uncovered in ... Show More
51m 35s
Recommended Episodes
Mar 2022
Bayesian Machine Learning with Ravin Kumar (Ep. 191)
<p>This is one episode where passion for math, statistics and computers are merged. I have a very interesting conversation with Ravin,  data scientist at Google where he uses data to inform decisions.</p> <p>He has previously worked at Sweetgreen, designing systems that would b ... Show More
31m 12s
Aug 2023
2476: ThoughtSpot - How AI Analytics is Redefining Business Intelligence
<p>In the rapidly evolving world of data analytics, staying ahead of the curve is essential. Today on Tech Talks Daily, I'm thrilled to have Sumeet Arora from ThoughtSpot to walk us through their game-changing announcements. ThoughtSpot is already renowned for its advanced analyt ... Show More
33m 55s
Oct 2023
#628: Data on EKS
Organizations use their data to make better decisions and build innovative experiences for their customers. With the exponential growth in data, and the rapid pace of innovation in machine learning (ML), there is a growing need to build modern data applications that are agile and ... Show More
20m 56s
Nov 2021
Time Plus Data Equals Efficiency with Paul Dix, the Founder and CTO of InfluxData and the Creator of InfluxDB
<p>If the topic of databases is brought up to certain people, their eyes may gloss over. But if that happened, that would be because they just don’t know the awesome power of databases. Data can be valuable but only if it is contextualized, and time is an extremely relevant aspec ... Show More
36m 4s
Feb 2023
Shorten the distance between production data and insight
<p>Modern networked applications generate a lot of data, and every business wants to make the most of that data. Most of the time, that means moving production data through some transformation process to get it ready for the analytics process. But what if you could have in-app an ... Show More
20m 27s
Jun 2024
Making ETL pipelines a thing of the past
<p>RelationalAI’s first <a href="https://relational.ai/resources/introducing-first-ai-coprocessor" target="_blank">big partner is Snowflake</a>, meaning customers can now start using their data with GenAI without worrying about the privacy, security, and governance hassle that wo ... Show More
26m 13s
Aug 2018
The Future of Computing
<p>In this episode, we are joined by Alex Wright-Gladstein, CEO and co-founder of Ayar Labs. Ayar Labs has developed new electronic-photonic integrated circuits that move data using light instead of electricity.</p> <p>Alex shares exciting insights around the future of computing ... Show More
29m 8s
Mar 2022
Mining the Golden Age of Data with Tableau’s CEO & President Mark Nelson
<p><a href="https://www.linkedin.com/in/markthomasnelson/">Mark Nelson</a> is the President and CEO of <a href="https://www.tableau.com/">Tableau</a>, a company dedicated to democratizing analytics and putting data back in the hands of consumers. But while this digital pioneer ma ... Show More
36m 32s
Jun 2022
Using AI to Supercharge Data-Driven Applications with Zilliz
Theo is in the interviewer’s chair for this episode as Frank Liu from Zilliz joins the show to talk about how AI and machine learning are making it possible for developers to understand and extract more value from unstructured data such as text, audio, images, video, and more. Tr ... Show More
20 m