logo
episode-header-image
Jul 2021
49m 2s

Exploring The Design And Benefits Of The...

Tobias Macey
About this episode

Summary

We have been building platforms and workflows to store, process, and analyze data since the earliest days of computing. Over that time there have been countless architectures, patterns, and "best practices" to make that task manageable. With the growing popularity of cloud services a new pattern has emerged and been dubbed the "Modern Data Stack". In this episode members of the GoDataDriven team, Guillermo Sanchez, Bram Ochsendorf, and Juan Perafan, explain the combinations of services that comprise this architecture, share their experiences working with clients to employ the stack, and the benefits of bringing engineers and business users together with data.

Announcements

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • You listen to this show to learn about all of the latest tools, patterns, and practices that power data engineering projects across every domain. Now there’s a book that captures the foundational lessons and principles that underly everything that you hear about here. I’m happy to announce I collected wisdom from the community to help you in your journey as a data engineer and worked with O’Reilly to publish it as 97 Things Every Data Engineer Should Know. Go to dataengineeringpodcast.com/97things today to get your copy!
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
  • RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today.
  • We’ve all been asked to help with an ad-hoc request for data by the sales and marketing team. Then it becomes a critical report that they need updated every week or every day. Then what do you do? Send a CSV via email? Write some Python scripts to automate it? But what about incremental sync, API quotas, error handling, and all of the other details that eat up your time? Today, there is a better way. With Census, just write SQL or plug in your dbt models and start syncing your cloud warehouse to SaaS applications like Salesforce, Marketo, Hubspot, and many more. Go to dataengineeringpodcast.com/census today to get a free 14-day trial.
  • Your host is Tobias Macey and today I’m interviewing Guillermo Sanchez, Bram Ochsendorf, and Juan Perafan about their experiences with managed services in the modern data stack in their work as consultants at GoDataDriven

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by giving your definition of the modern data stack?
    • What are the key characteristics of a tool or platform that make it a candidate for the "modern" stack?
  • How does the modern data stack shift the responsibilities and capabilities of data professionals and consumers?
  • What are some difficulties that you face when working with customers to migrate to these new architectures?
  • What are some of the limitations of the components or paradigms of the modern stack?
    • What are some strategies that you have devised for addressing those limitations?
    • What are some edge cases that you have run up against with specific vendors that you have had to work around?
    • What are the "gotchas" that you don’t run up against until you’ve deployed a service and started using it at scale and over time?
  • How does data governance get applied across the various services and systems of the modern stack?
  • One of the core promises of cloud-based and managed services for data is the ability for data analysts and consumers to self-serve. What kinds of training have you found to be necessary/useful for those end-users?
  • What is the role of data engineers in the context of the "modern" stack?
  • What are the most interesting, innovative, or unexpected manifestations of the modern data stack that you have seen?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while working with customers to implement a modern data stack?
  • When is the modern data stack the wrong choice?
  • What new architectures or tools are you keeping an eye on for future client work?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

  • Thank you for listening! Don’t forget to check out our other show, Podcast.__init__ to learn about the Python language, its community, and the innovative ways it is being used.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story.
  • To help other people find the show please leave a review on iTunes and tell your friends and co-workers
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Up next
Jul 6
Foundational Data Engineering At 2Sigma
SummaryIn this episode of the Data Engineering Podcast Effie Baram, a leader in foundational data engineering at Two Sigma, talks about the complexities and innovations in data engineering within the finance sector. She discusses the critical role of data at Two Sigma, balancing ... Show More
55m 5s
Jun 29
Enabling Agents In The Enterprise With A Platform Approach
SummaryIn this episode of the Data Engineering Podcast Arun Joseph talks about developing and implementing agent platforms to empower businesses with agentic capabilities. From leading AI engineering at Deutsche Telekom to his current entrepreneurial venture focused on multi-agen ... Show More
54m 18s
Jun 18
Dagster's New Era: Modularizing Data Transformation in the Age of AI
SummaryIn this episode of the Data Engineering Podcast we welcome back Nick Schrock, CTO and founder of Dagster Labs, to discuss the evolving landscape of data engineering in the age of AI. As AI begins to impact data platforms and the role of data engineers, Nick shares his insi ... Show More
1h 1m
Recommended Episodes
Feb 2023
Shorten the distance between production data and insight
Modern networked applications generate a lot of data, and every business wants to make the most of that data. Most of the time, that means moving production data through some transformation process to get it ready for the analytics process. But what if you could have in-app analy ... Show More
20m 27s
Mar 2022
Bayesian Machine Learning with Ravin Kumar (Ep. 191)
This is one episode where passion for math, statistics and computers are merged. I have a very interesting conversation with Ravin,  data scientist at Google where he uses data to inform decisions. He has previously worked at Sweetgreen, designing systems that would benefit team ... Show More
31m 12s
May 2024
Deepthi Sigireddi on Distributed Database Architecture in the Cloud Native Era
In this podcast, Vitess CNCF project technical lead Deepthi Sigireddi discusses the architecture of cloud native distributed databases, sharding, replication, and failover. She also talks about what DB developers should consider when choosing distributed databases. Read a transcr ... Show More
37m 24s
Mar 2022
Mining the Golden Age of Data with Tableau’s CEO & President Mark Nelson
Mark Nelson is the President and CEO of Tableau, a company dedicated to democratizing analytics and putting data back in the hands of consumers. But while this digital pioneer may be excited about the technical side of things, he’s more excited about how accessing data (and askin ... Show More
36m 32s
Nov 2021
Time Plus Data Equals Efficiency with Paul Dix, the Founder and CTO of InfluxData and the Creator of InfluxDB
If the topic of databases is brought up to certain people, their eyes may gloss over. But if that happened, that would be because they just don’t know the awesome power of databases. Data can be valuable but only if it is contextualized, and time is an extremely relevant aspect t ... Show More
36m 4s
Mar 2020
GitHub Actions and the DevOps Lifecycle
Chris Patterson (@chrisrpatterson, Product Manager for GitHub Actions @GitHub) talks about the evolution of GitHub from a collaboration-centric platform to a DevOps-centric platform, as well as discussing the expanding role of GitHub Actions for developers, DevOps and SREs. SHOW: ... Show More
28m 13s
Feb 2023
Better Science Volume 2: Maps, Metadata, and the Pyramid
Jump in on a second episode of the Better Science series with guest host and Technical Evangelist Justin Emerson interviewing FlashArray engineer Feng Wang about how Pure maps data at scale with a single, scalable data structure. Managing storage in modern times requires a strate ... Show More
46m 3s
Oct 2023
#628: Data on EKS
Organizations use their data to make better decisions and build innovative experiences for their customers. With the exponential growth in data, and the rapid pace of innovation in machine learning (ML), there is a growing need to build modern data applications that are agile and ... Show More
20m 56s
Dec 2020
The Algorithms that Bring you Style with Stitch Fix’s Director of Data Science, Tatsiana Maskalevich
The old saying, “look good, feel good,'' fits Stitch Fix perfectly. The direct-to-consumer, online personal styling service has boomed due to its ability to not only match consumers with trendy and comfortable clothes, but to make it a personalized experience for each buyer.“At t ... Show More
52m 39s