الكيمياءُ مليئةٌ بالأسئلةِ التي لمْ يُجَبْ عنها. أحدُ الأسئلةِ الأولى التي طرحَها الناسُ منذُ العصورِ القديمةِ هوَ: ممَّ يتكونُ العالم؟
أيْ أنَّنا إذا قمنا بتكبيرِ الجلدِ الموجودِ على طرفِ أصبعكَ بمقدارِ مليار مرة؛ فماذا سنرى؟
هلْ سيبدو ذلكَ مختلفًا عنْ تكبيرِ تفاحةٍ مثلاً؟ إذا قمنا بعدَ ذلكَ بتقطيعِ التفاحةِ إلى قطعٍ أصغرَ وأصغرَ باستخدامِ سكينٍ صغيرةٍ وهمية، فهلْ سنصلُ إلى نقطةٍ بحيثُ لمْ يعدْ منَ الممكنِ قطعُ القطعِ أصغر؟ كيفَ ستبدو تلكَ القطع، وهلْ ستظلُّ تحتوي على خصائصِ التفاح؟
تُعدُّ الإجاباتُ عنْ هذهِ الأسئلةِ أساسيةً في الكيمياءِ الحديثة، ولمْ يتفقِ الكيميائيونَ على الإجابةِ إلا قبلَ بضعِ مئاتٍ منَ السنين. بفضلِ علماءَ مثلِ جون دالتون، الذي وضعَ أساسًا للمفهومِ الذي نعرفُه اليومَ باسمِ "الذرة".
اقترحَ دالتون أنَّ كلَّ ذرةٍ منْ أيِّ عنصر، مثلِ الذهب، هيَ نفسُها كلُّ ذرةٍ أخرى منْ ذلكَ العنصر. كما أشارَ إلى أنَّ ذراتِ العنصرِ الواحدِ تختلفُ عنْ ذراتِ جميعِ العناصرِ الأخرى. اليومَ، ما زلْنا نعرفُ أنَّ هذا صحيحٌ في الغالب. فذرةُ الصوديوم تختلفُ عنْ ذرةِ الكربون. قدْ تشتركُ العناصرُ في بعضِ نقاطِ الغليانِ ونقاطِ الانصهارِ والسالبيةِ الكهربيةِ المتشابهة، ولكنْ لا يوجدُ عنصرانِ لهما مجموعةُ الخصائصِ الدقيقةِ نفسُها.
بعدَ ذلك؛ تساءلَ العلماءُ عنِ القوى التي تربطُ الذراتِ بعضَها معَ بعض.
في نهايةِ القرنِ التاسعَ عشَر، أصبحَ منَ الواضحِ أنَّه يتعينُ على العلماءِ أنْ يأخذُوا في الاعتبارِ عدةَ أنواعٍ مختلفةٍ منَ الروابطِ الكيميائية. فما يربطُ ذراتٍ في مركبٍ معين؛ لا يُمكنُ أنْ تكونَ هيَ الرابطةُ نفسُها التي تربطُ الذراتِ في مركبٍ آخر.
فالرابطةُ التي تحدثُ بينَ الذراتِ المشحونةِ كهربائيًّا، والتي تُسمى بالأيونات؛ تسمى بالرابطةِ الأيونية، وهي الأكثرُ شيوعًا، توحدُ الذراتِ في بلوراتِ الأملاحِ البسيطة.
وهناكَ نوعٌ آخرُ منَ الروابطِ يُسمى بالرابطةِ التساهمية. ويحدثُ عادةً عندَما تتحدُ الذراتُ لتشكلَ جزيئًا.
ولفترةٍ طويلةٍ كانَ منَ الصعبِ تفسيرُ طبيعةِ الروابطِ التساهمية. وفي عامِ ألفٍ وتِسعِمئةٍ وستةَ عشَرَ اجتهدَ علماءُ في إثباتِ أنَّ هذهِ الظاهرةَ تنتجُ عنْ إلكترونينِ يشتركُ فيهما ذرتانِ متجاورتان. وبعدَ مرورِ أحدَ عشَرَ عامًا، تمكنَ علماءُ آخرونَ منْ تقديمِ تفسيرٍ ميكانيكيٍّ كميٍّ لهذهِ الظاهرة. ومعَ ذلك، لمْ يكنْ منَ الممكنِ إجراءُ معالجةٍ رياضيةٍ دقيقةٍ للرابطةِ التساهميةِ إلا في الحالةِ البسيطةِ التي يوحدُ فيها إلكترونٌ واحدٌ الذرتين.
حتى جاءَ العالِمُ الأمريكي "لينوس بولينج"، الذي تمكنَ عنْ طريقِ استخدامِ فحصِ البلوراتِ بالأشعةِ السينيةِ منْ تحديدِ طبيعةِ الروابطِ التساهميةِ وتوضيحِ بنيةِ الموادِّ المعقدة؛ وهوَ ما أهلَه للحصولِ على جائزةِ نوبلِ الكيمياءِ لعامِ ألفٍ وتِسعِمئةٍ وأربعةٍ وخمسين.
إلا أنَّ "بولينج" لمْ يكنْ فقطْ ذلكَ الشخصَ الذي اكتشفَ طبيعةَ أحدِ أهمِّ الروابطِ في عالمِ الكيمياء؛ بلْ كانَ واحدًا منْ أعظمِ العلماءِ والعاملينَ في المجالِ الإنسانيِّ ومدافعًا محبوبًا عنِ الحرياتِ المدنيةِ والقضايا الصحيةِ يحظى باحترامٍ كبير .
فبسببِ شخصيتِه الديناميكيةِ وإنجازاتِه العديدةِ في مجالاتٍ متنوعةٍ على نطاقٍ واسع، أصبحَ منَ الصعبِ تعريفُ لينوس بولينج بشكلٍ مناسب. كانَ "بولينج" رجلًا رائعًا تناوَلَ بإصرارٍ بعضَ المشكلاتِ الإنسانيةِ الحاسمةِ بينما كانَ يسعى إلى مجموعةٍ مذهلةٍ منَ الاهتماماتِ العلمية، وكانَ معروفًا لدى الجمهورِ الأمريكيِّ كما كانَ معروفًا لدى المجتمعِ العلميِّ في العالم. وهوَ الشخصُ الوحيدُ على الإطلاقِ الذي حصلَ على جائزتَي نوبل دونَ أنْ يتقاسمَهما أحدًا، في الكيمياءِ عامَ ألفٍ وتِسعِمئةٍ وأربعةٍ وخمسين، وفي السلامِ عامَ ألفٍ وتِسعِمئةٍ واثنينِ وستين.
بالإضافةِ إلى الاعترافِ العامِّ بهِ كواحدٍ منْ أعظمِ عالِمَينِ في القرنِ العشرين، فقدْ تمَّ الاعترافُ به عادةً منْ قِبَلِ زملائِه باعتبارِه الكيميائيَّ الأكثرَ تأثيرًا منذُ لافوازييه، مؤسسِ علمِ الكيمياءِ الحديثِ في القرنِ الثامنِ عشَر.
Hosted on Acast. See acast.com/privacy for more information.