logo
episode-header-image
Mar 2024
40m 55s

Version Your Data Lakehouse Like Your So...

Tobias Macey
About this episode

Summary

Data lakehouse architectures are gaining popularity due to the flexibility and cost effectiveness that they offer. The link that bridges the gap between data lake and warehouse capabilities is the catalog. The primary purpose of the catalog is to inform the query engine of what data exists and where, but the Nessie project aims to go beyond that simple utility. In this episode Alex Merced explains how the branching and merging functionality in Nessie allows you to use the same versioning semantics for your data lakehouse that you are used to from Git.

Announcements

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • Dagster offers a new approach to building and running data platforms and data pipelines. It is an open-source, cloud-native orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. Your team can get up and running in minutes thanks to Dagster Cloud, an enterprise-class hosted solution that offers serverless and hybrid deployments, enhanced security, and on-demand ephemeral test deployments. Go to dataengineeringpodcast.com/dagster today to get started. Your first 30 days are free!
  • Data lakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the data lake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics. Trusted by teams of all sizes, including Comcast and Doordash, Starburst is a data lake analytics platform that delivers the adaptability and flexibility a lakehouse ecosystem promises. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data. Want to see Starburst in action? Go to dataengineeringpodcast.com/starburst and get $500 in credits to try Starburst Galaxy today, the easiest and fastest way to get started using Trino.
  • Join us at the top event for the global data community, Data Council Austin. From March 26-28th 2024, we'll play host to hundreds of attendees, 100 top speakers and dozens of startups that are advancing data science, engineering and AI. Data Council attendees are amazing founders, data scientists, lead engineers, CTOs, heads of data, investors and community organizers who are all working together to build the future of data and sharing their insights and learnings through deeply technical talks. As a listener to the Data Engineering Podcast you can get a special discount off regular priced and late bird tickets by using the promo code dataengpod20. Don't miss out on our only event this year! Visit dataengineeringpodcast.com/data-council and use code dataengpod20 to register today!
  • Your host is Tobias Macey and today I'm interviewing Alex Merced, developer advocate at Dremio and co-author of the upcoming book from O'reilly, "Apache Iceberg, The definitive Guide", about Nessie, a git-like versioned catalog for data lakes using Apache Iceberg

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you describe what Nessie is and the story behind it?
  • What are the core problems/complexities that Nessie is designed to solve?
  • The closest analogue to Nessie that I've seen in the ecosystem is LakeFS. What are the features that would lead someone to choose one or the other for a given use case?
  • Why would someone choose Nessie over native table-level branching in the Apache Iceberg spec?
  • How do the versioning capabilities compare to/augment the data versioning in Iceberg?
  • What are some of the sources of, and challenges in resolving, merge conflicts between table branches?
  • Can you describe the architecture of Nessie?
  • How have the design and goals of the project changed since it was first created?
  • What is involved in integrating Nessie into a given data stack?
  • For cases where a given query/compute engine doesn't natively support Nessie, what are the options for using it effectively?
  • How does the inclusion of Nessie in a data lake influence the overall workflow of developing/deploying/evolving processing flows?
  • What are the most interesting, innovative, or unexpected ways that you have seen Nessie used?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while working with Nessie?
  • When is Nessie the wrong choice?
  • What have you heard is planned for the future of Nessie?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

  • Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story.

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Sponsored By:

Support Data Engineering Podcast

Up next
Jul 6
Foundational Data Engineering At 2Sigma
SummaryIn this episode of the Data Engineering Podcast Effie Baram, a leader in foundational data engineering at Two Sigma, talks about the complexities and innovations in data engineering within the finance sector. She discusses the critical role of data at Two Sigma, balancing ... Show More
55m 5s
Jun 29
Enabling Agents In The Enterprise With A Platform Approach
SummaryIn this episode of the Data Engineering Podcast Arun Joseph talks about developing and implementing agent platforms to empower businesses with agentic capabilities. From leading AI engineering at Deutsche Telekom to his current entrepreneurial venture focused on multi-agen ... Show More
54m 18s
Jun 18
Dagster's New Era: Modularizing Data Transformation in the Age of AI
SummaryIn this episode of the Data Engineering Podcast we welcome back Nick Schrock, CTO and founder of Dagster Labs, to discuss the evolving landscape of data engineering in the age of AI. As AI begins to impact data platforms and the role of data engineers, Nick shares his insi ... Show More
1h 1m
Recommended Episodes
Mar 2022
Bayesian Machine Learning with Ravin Kumar (Ep. 191)
This is one episode where passion for math, statistics and computers are merged. I have a very interesting conversation with Ravin,  data scientist at Google where he uses data to inform decisions. He has previously worked at Sweetgreen, designing systems that would benefit team ... Show More
31m 12s
Nov 2021
577. Insights: Big Data is just getting started
Our expert host, Gwera Kiwana, is joined by some great guests to talk about all things Big Data. Large banks were some of the first big believers in the power of Big Data – but issues meant that initial hopes weren’t quite achieved. However, the potential of Big Data has progress ... Show More
47m 41s
Mar 2024
LLM Security and Privacy
Sean Falconer (@seanfalconer, Head of Dev Relations @SkyflowAPI, Host @software_daily) talks about security and privacy of LLMs and how to prevent PII (personally identifiable information) from leaking outSHOW: 807 CLOUD NEWS OF THE WEEK - http://bit.ly/cloudcast-cnotw NEW TO CLO ... Show More
26m 9s
Sep 2023
Hot Takes, Ember Data, and Open Source with Chris Thoburn (Runspired)
After years in the tech game, senior developers know that it’s important to find a balance between innovation and stability in engineering. How can developers strike the balance between embracing new tools and ensuring the steadfastness of their applications over the long haul? C ... Show More
1h 8m
Mar 2022
Mining the Golden Age of Data with Tableau’s CEO & President Mark Nelson
Mark Nelson is the President and CEO of Tableau, a company dedicated to democratizing analytics and putting data back in the hands of consumers. But while this digital pioneer may be excited about the technical side of things, he’s more excited about how accessing data (and askin ... Show More
36m 32s
Jul 2020
Chris Fernandez, EnsoData - There Was One Particular Area That Felt Like It Was At Least 5 Years Behind…And That Was The Application Of AI To Waveform Data | #239
In episode 239 we welcome our guest, Chris Fernandez, co-founder and CEO of EnsoData. In today’s episode, we’re talking all things sleep. We walk through the origin story of EnsoData, from the founders’ initial idea followed by 12 pivots to arrive at their flagship product, EnsoS ... Show More
53m 11s
May 2024
Deepthi Sigireddi on Distributed Database Architecture in the Cloud Native Era
In this podcast, Vitess CNCF project technical lead Deepthi Sigireddi discusses the architecture of cloud native distributed databases, sharding, replication, and failover. She also talks about what DB developers should consider when choosing distributed databases. Read a transcr ... Show More
37m 24s
Mar 2024
AI vs software devs
Daniel and Chris are out this week, so we’re bringing you conversations all about AI’s complicated relationship to software developers from other Changelog pods: JS Party, Go Time & The Changelog.Join the discussionChangelog++ members save 2 minutes on this episode because they m ... Show More
57 m