About this episode
Summary
Software is eating the world, but that code has to have hardware to execute the instructions. Most people, and many software engineers, don’t have a proper understanding of how that hardware functions. Charles Petzold wrote the book "Code: The Hidden Language of Computer Hardware and Software" to make this a less opaque subject. In this episode he discusses what motivated him to revise that work in the second edition and the additional details that he packed in to explore the functioning of the CPU.
Announcements
- Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great!
- When you’re ready to launch your next app or want to try a project you hear about on the show, you’ll need somewhere to deploy it, so take a look at our friends over at Linode. With their managed Kubernetes platform it’s easy to get started with the next generation of deployment and scaling, powered by the battle tested Linode platform, including simple pricing, node balancers, 40Gbit networking, dedicated CPU and GPU instances, and worldwide data centers. And now you can launch a managed MySQL, Postgres, or Mongo database cluster in minutes to keep your critical data safe with automated backups and failover. Go to pythonpodcast.com/linode and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
- Your host as usual is Tobias Macey and today I’m interviewing Charles Petzold about his work on the second edition of Code: The Hidden Language of Computer Hardware and Software
Interview
- Introductions
- How did you get introduced to Python?
- Can you start by describing the focus and goal of "Code" and the story behind it?
- Who is the target audience for the book?
- The sequencing of the topics parallels the curriculum of a computer engineering course of study. Why do you think that it is useful/important for a general audience to understand the electrical engineering principles that underly modern computers?
- What was your process for determining how to segment the information that you wanted to address in the book to balance the pacing of the reader with the density of the information?
- Technical books are notoriously challenging to write due to the constantly changing subject matter. What are some of the ways that the first edition of "Code" was becoming outdated?
- What are the most notable changes in the foundational elements of computing that have happened in the time since the first edition was published?
- One of the concepts that I have found most helpful as a software engineer is that of "mechanical sympathy". What are some of the ways that a better understanding of computer hardware and electrical signal processing can influence and improve the way that an engineer writes code?
- What are some of the insights that you gained about your own use of computers and software while working on this book?
- What are the most interesting, unexpected, or challenging lessons that you have learned while writing "Code" and revising it for the second edition?
- Once the reader has finished with your book, what are some of the other references/resources that you recommend?
Keep In Touch
Picks
Links
The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA
Dec 2022
Update Your Model's View Of The World In Real Time With Streaming Machine Learning Using River
Preamble
This is a cross-over episode from our new show The Machine Learning Podcast, the show about going from idea to production with machine learning.
Summary
The majority of machine learning projects that you read about or work on are built around batch processes. The model i ... Show More
1h 16m
Dec 2022
Declarative Machine Learning For High Performance Deep Learning Models With Predibase
Preamble
This is a cross-over episode from our new show The Machine Learning Podcast, the show about going from idea to production with machine learning.
Summary
Deep learning is a revolutionary category of machine learning that accelerates our ability to build powerful inference ... Show More
59m 22s
Nov 2022
Build Better Machine Learning Models With Confidence By Adding Validation With Deepchecks
Preamble
This is a cross-over episode from our new show The Machine Learning Podcast, the show about going from idea to production with machine learning.
Summary
Machine learning has the potential to transform industries and revolutionize business capabilities, but only if the mo ... Show More
47m 37s
Feb 2025
#495: OSMnx: Python and OpenStreetMap
On this episode, I’m joined by Dr. Jeff Boeing, an assistant professor at the University of Southern California whose research spans urban planning, spatial analysis, and data science. We explore why OpenStreetMap is such a powerful source of global map data—and how Jeff’s Python ... Show More
1h 1m
Sep 2021
An Exploration Of The Data Engineering Requirements For Bioinformatics
Summary
Biology has been gaining a lot of attention in recent years, even before the pandemic. As an outgrowth of that popularity, a new field has grown up that pairs statistics and compuational analysis with scientific research, namely bioinformatics. This brings with it a uniqu ... Show More
55m 10s
May 2022
Insights And Advice On Building A Data Lake Platform From Someone Who Learned The Hard Way
Summary
Designing a data platform is a complex and iterative undertaking which requires accounting for many conflicting needs. Designing a platform that relies on a data lake as its central architectural tenet adds additional layers of difficulty. Srivatsan Sridharan has had the ... Show More
58m 11s
Mar 2021
Data Quality Management For The Whole Team With Soda Data
Summary
Data quality is on the top of everyone’s mind recently, but getting it right is as challenging as ever. One of the contributing factors is the number of people who are involved in the process and the potential impact on the business if something goes wrong. In this episod ... Show More
58 m
Aug 2024
The Evolution of DataOps: Insights from DataKitchen's CEO
Summary
In this episode of the Data Engineering Podcast, host Tobias Macey welcomes back Chris Berg, CEO of DataKitchen, to discuss his ongoing mission to simplify the lives of data engineers. Chris explains the challenges faced by data engineers, such as constant system failures ... Show More
53m 30s
Feb 2025
The Future of Data Engineering: AI, LLMs, and Automation
Summary
In this episode of the Data Engineering Podcast Gleb Mezhanskiy, CEO and co-founder of DataFold, talks about the intersection of AI and data engineering. He discusses the challenges and opportunities of integrating AI into data engineering, particularly using large langua ... Show More
59m 39s
Feb 2024
Using Trino And Iceberg As The Foundation Of Your Data Lakehouse
Summary
A data lakehouse is intended to combine the benefits of data lakes (cost effective, scalable storage and compute) and data warehouses (user friendly SQL interface). Multiple open source projects and vendors have been working together to make this vision a reality. In this ... Show More
58m 46s
Aug 2018
258: A Foot in the Door
This week, we debut the new show format! First, Marshall formally introduces himself, and we answer a listener's question about how to get their foot in the UX door. Then we cover a few headlines, fight about stock vs. third-party apps, and share a couple cool things. If you have ... Show More
38m 51s
Aug 2019
Building Tools And Platforms For Data Analytics
Summary
Data engineers are responsible for building tools and platforms to power the workflows of other members of the business. Each group of users has their own set of requirements for the way that they access and interact with those platforms depending on the insights they are ... Show More
48m 7s
Dec 2024
The Art of Database Selection and Evolution
Summary
In this episode of the Data Engineering Podcast Sam Kleinman talks about the pivotal role of databases in software engineering. Sam shares his journey into the world of data and discusses the complexities of database selection, highlighting the trade-offs between differen ... Show More
59m 56s