logo
episode-header-image
Jul 28
51m 56s

Revolutionizing Python Notebooks with Ma...

Tobias Macey
About this episode
Summary
In this episode of the Data Engineering Podcast Akshay Agrawal from Marimo discusses the innovative new Python notebook environment, which offers a reactive execution model, full Python integration, and built-in UI elements to enhance the interactive computing experience. He discusses the challenges of traditional Jupyter notebooks, such as hidden states and lack of interactivity, and how Marimo addresses these issues with features like reactive execution and Python-native file formats. Akshay also explores the broader landscape of programmatic notebooks, comparing Marimo to other tools like Jupyter, Streamlit, and Hex, highlighting its unique approach to creating data apps directly from notebooks and eliminating the need for separate app development. The conversation delves into the technical architecture of Marimo, its community-driven development, and future plans, including a commercial offering and enhanced AI integration, emphasizing Marimo's role in bridging the gap between data exploration and production-ready applications.

Announcements
  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • Tired of data migrations that drag on for months or even years? What if I told you there's a way to cut that timeline by up to 6x while guaranteeing accuracy? Datafold's Migration Agent is the only AI-powered solution that doesn't just translate your code; it validates every single data point to ensure perfect parity between your old and new systems. Whether you're moving from Oracle to Snowflake, migrating stored procedures to dbt, or handling complex multi-system migrations, they deliver production-ready code with a guaranteed timeline and fixed price. Stop burning budget on endless consulting hours. Visit dataengineeringpodcast.com/datafold to book a demo and see how they're turning months-long migration nightmares into week-long success stories.
  • Your host is Tobias Macey and today I'm interviewing Akshay Agrawal about Marimo, a reusable and reproducible Python notebook environment
Interview
  • Introduction
  • How did you get involved in the area of data management?
  • Can you describe what Marimo is and the story behind it?
  • What are the core problems and use cases that you are focused on addressing with Marimo?
    • What are you explicitly not trying to solve for with Marimo?
  • Programmatic notebooks have been around for decades now. Jupyter was largely responsible for making them popular outside of academia. How have the applications of notebooks changed in recent years?
    • What are the limitations that have been most challenging to address in production contexts?
  • Jupyter has long had support for multi-language notebooks/notebook kernels. What is your opinion on the utility of that feature as a core concern of the notebook system?
  • Beyond notebooks, Streamlit and Hex have become quite popular for publishing the results of notebook-style analysis. How would you characterize the feature set of Marimo for those use cases?
  • For a typical data team that is working across data pipelines, business analytics, ML/AI engineering, etc. How do you see Marimo applied within and across those contexts?
  • One of the common difficulties with notebooks is that they are largely a single-player experience. They may connect into a shared compute cluster for scaling up execution (e.g. Ray, Dask, etc.). How does Marimo address the situation where a data platform team wants to offer notebooks as a service to reduce the friction to getting started with analyzing data in a warehouse/lakehouse context?
  • How are you seeing teams integrate Marimo with orchestrators (e.g. Dagster, Airflow, Prefect)?
  • What are some of the most interesting or complex engineering challenges that you have had to address while building and evolving Marimo?\
  • What are the most interesting, innovative, or unexpected ways that you have seen Marimo used?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while working on Marimo?
  • When is Marimo the wrong choice?
  • What do you have planned for the future of Marimo?
Contact Info
Parting Question
  • From your perspective, what is the biggest gap in the tooling or technology for data management today?
Closing Announcements
  • Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com with your story.
Links
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Up next
Aug 5
From Bits to Tables: The Evolution of S3 Storage
SummaryIn this episode of the Data Engineering Podcast Andy Warfield talks about the innovative functionalities of S3 Tables and Vectors and their integration into modern data stacks. Andy shares his journey through the tech industry and his role at Amazon, where he collaborates ... Show More
50m 8s
Jul 21
Warehouse Native Incremental Data Processing With Dynamic Tables And Delayed View Semantics
SummaryIn this episode of the Data Engineering Podcast Dan Sotolongo from Snowflake talks about the complexities of incremental data processing in warehouse environments. Dan discusses the challenges of handling continuously evolving datasets and the importance of incremental dat ... Show More
55m 7s
Jul 15
Streamlining Data Pipelines with MCP Servers and Vector Engines
SummaryIn this episode of the Data Engineering Podcast Kacper Łukawski from Qdrant about integrating MCP servers with vector databases to process unstructured data. Kacper shares his experience in data engineering, from building big data pipelines in the automotive industry to le ... Show More
52m 4s
Recommended Episodes
Aug 5
911: The Future of Python Notebooks is Here, with Marimo’s Dr. Akshay Agrawal
Reproducibility, Python notebooks, and data science communities: Software developer Akshay Agrawal speaks to Jon Krohn about Marimo, the next-generation computational notebook for Python, how he built and fostered a thriving community around the product, and what makes this noteb ... Show More
58m 20s
Dec 2024
#491: DuckDB and Python: Ducks and Snakes living together
Join me for an insightful conversation with Alex Monahan, who works on documentation, tutorials, and training at DuckDB Labs. We explore why DuckDB is gaining momentum among Python and data enthusiasts, from its in-process database design to its blazingly fast, columnar architect ... Show More
1h 2m
Feb 2025
#495: OSMnx: Python and OpenStreetMap
On this episode, I’m joined by Dr. Jeff Boeing, an assistant professor at the University of Southern California whose research spans urban planning, spatial analysis, and data science. We explore why OpenStreetMap is such a powerful source of global map data—and how Jeff’s Python ... Show More
1h 1m
Mar 2017
MetPy: Taming The Weather With Python
Summary What’s the weather tomorrow? That’s the question that meteorologists are always trying to get better at answering. This week the developers of MetPy discuss how their project is used in that quest and the challenges that are inherent in atmospheric and weather research. I ... Show More
52m 23s
Jun 2023
AI trends: a Latent Space crossover
Daniel had the chance to sit down with @swyx and Alessio from the Latent Space pod in SF to talk about current AI trends and to highlight some key learnings from past episodes. The discussion covers open access LLMs, smol models, model controls, prompt engineering, and LLMOps. Th ... Show More
59m 39s
Dec 2024
#489: Anaconda Toolbox for Excel and more with Peter Wang
Peter Wang has been pushing Python forward since the early days of its data science roots. We're lucky to have him back on the show. We're going to talk about the Anaconda Toolbox for Excel as well as many other trends and topics that are hot in the Python space right now. I'm su ... Show More
1h 9m
Mar 2023
#408: Hatch: A Modern Python Workflow
See the full show notes for this episode on the website at talkpython.fm/408 
1h 2m
May 8
MLG 035 Large Language Models 2
At inference, large language models use in-context learning with zero-, one-, or few-shot examples to perform new tasks without weight updates, and can be grounded with Retrieval Augmented Generation (RAG) by embedding documents into vector databases for real-time factual lookup ... Show More
45m 25s
Feb 2025
MATLAB vs. Python vs. Julia: The Hidden Truths - Gareth Thomas | Podcast #147
🌎 More about Versionbay: https://www.versionbay.com/Connect with Gareth on LinkedIn: https://www.linkedin.com/in/g-thomas/In this episode, we sit down with Gareth Thomas, founder of VersionBay, to explore the critical role of software versioning in engineering and how companies ... Show More
32m 57s
May 2023
675: Pandas for Data Analysis and Visualization
Wrangling data in Pandas, when to use Pandas, Matplotlib or Seaborn, and why you should learn to create Python packages: Jon Krohn speaks with guest Stefanie Molin, author of Hands-On Data Analysis with Pandas.This episode is brought to you by Posit, the open-source data science ... Show More
1h 8m