About this episode
Summary
Analysis of streaming data in real time has long been the domain of big data frameworks, predominantly written in Java. In order to take advantage of those capabilities from Python requires using client libraries that suffer from impedance mis-matches that make the work harder than necessary. Bytewax is a new open source platform for writing stream processing applications in pure Python that don’t have to be translated into foreign idioms. In this episode Bytewax founder Zander Matheson explains how the system works and how to get started with it today.
Announcements
- Hello and welcome to Podcast.__init__, the podcast about Python’s role in data and science.
- When you’re ready to launch your next app or want to try a project you hear about on the show, you’ll need somewhere to deploy it, so take a look at our friends over at Linode. With their managed Kubernetes platform it’s easy to get started with the next generation of deployment and scaling, powered by the battle tested Linode platform, including simple pricing, node balancers, 40Gbit networking, dedicated CPU and GPU instances, and worldwide data centers. And now you can launch a managed MySQL, Postgres, or Mongo database cluster in minutes to keep your critical data safe with automated backups and failover. Go to pythonpodcast.com/linode and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
- The biggest challenge with modern data systems is understanding what data you have, where it is located, and who is using it. Select Star’s data discovery platform solves that out of the box, with a fully automated catalog that includes lineage from where the data originated, all the way to which dashboards rely on it and who is viewing them every day. Just connect it to your dbt, Snowflake, Tableau, Looker, or whatever you’re using and Select Star will set everything up in just a few hours. Go to pythonpodcast.com/selectstar today to double the length of your free trial and get a swag package when you convert to a paid plan.
- Need to automate your Python code in the cloud? Want to avoid the hassle of setting up and maintaining infrastructure? Shipyard is the premier orchestration platform built to help you quickly launch, monitor, and share python workflows in a matter of minutes with 0 changes to your code. Shipyard provides powerful features like webhooks, error-handling, monitoring, automatic containerization, syncing with Github, and more. Plus, it comes with over 70 open-source, low-code templates to help you quickly build solutions with the tools you already use. Go to dataengineeringpodcast.com/shipyard to get started automating with a free developer plan today!
- Your host as usual is Tobias Macey and today I’m interviewing Zander Matheson about Bytewax, an open source Python framework for building highly scalable dataflows to process ANY data stream.
Interview
- Introductions
- How did you get introduced to Python?
- Can you describe what Bytewax is and the story behind it?
- Who are the target users for Bytewax?
- What is the problem that you are trying to solve with Bytewax?
- What are the alternative systems/architectures that you might replace with Bytewax?
- Can you describe how Bytewax is implemented?
- What are the benefits of Timely Dataflow as a core building block for a system like Bytewax?
- How have the design and goals of the project changed/evolved since you first started working on it?
- What are the axes available for scaling Bytewax execution?
- How have you approached the design of the Bytewax API to make it accessible to a broader audience?
- Can you describe what is involved in building a project with Bytewax?
- What are some of the stream processing concepts that engineers are likely to run up against as they are experimenting and designing their code?
- What is your motivation for providing the core technology of your business as an open source engine?
- How are you approaching the balance of project governance and sustainability with opportunities for commercialization?
- What are the most interesting, innovative, or unexpected ways that you have seen Bytewax used?
- What are the most interesting, unexpected, or challenging lessons that you have learned while working on Bytewax?
- When is Bytewax the wrong choice?
- What do you have planned for the future of Bytewax?
Keep In Touch
Picks
Links
The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA
Dec 2022
Update Your Model's View Of The World In Real Time With Streaming Machine Learning Using River
Preamble
This is a cross-over episode from our new show The Machine Learning Podcast, the show about going from idea to production with machine learning.
Summary
The majority of machine learning projects that you read about or work on are built around batch processes. The model i ... Show More
1h 16m
Dec 2022
Declarative Machine Learning For High Performance Deep Learning Models With Predibase
Preamble
This is a cross-over episode from our new show The Machine Learning Podcast, the show about going from idea to production with machine learning.
Summary
Deep learning is a revolutionary category of machine learning that accelerates our ability to build powerful inference ... Show More
59m 22s
Nov 2022
Build Better Machine Learning Models With Confidence By Adding Validation With Deepchecks
Preamble
This is a cross-over episode from our new show The Machine Learning Podcast, the show about going from idea to production with machine learning.
Summary
Machine learning has the potential to transform industries and revolutionize business capabilities, but only if the mo ... Show More
47m 37s
Jul 2025
Revolutionizing Python Notebooks with Marimo
SummaryIn this episode of the Data Engineering Podcast Akshay Agrawal from Marimo discusses the innovative new Python notebook environment, which offers a reactive execution model, full Python integration, and built-in UI elements to enhance the interactive computing experience. ... Show More
51m 56s
Feb 2025
#495: OSMnx: Python and OpenStreetMap
See the full show notes for this episode on the website at <a href="https://talkpython.fm/495">talkpython.fm/495</a>
1h 1m
Oct 11
Context Engineering as a Discipline: Building Governed AI Analytics
SummaryIn this episode of the Data Engineering Podcast, host Tobias Macey welcomes back Nick Schrock, CTO and founder of Dagster Labs, to discuss Compass - a Slack-native, agentic analytics system designed to keep data teams connected with business stakeholders. Nick shares his j ... Show More
51m 58s
Sep 2021
An Exploration Of The Data Engineering Requirements For Bioinformatics
<div class="wp-block-jetpack-markdown"><h2>Summary</h2>
<p>Biology has been gaining a lot of attention in recent years, even before the pandemic. As an outgrowth of that popularity, a new field has grown up that pairs statistics and compuational analysis with scientific research ... Show More
55m 10s
Aug 26
From Academia to Industry: Bridging Data Engineering Challenges
SummaryIn this episode of the Data Engineering Podcast Professor Paul Groth, from the University of Amsterdam, talks about his research on knowledge graphs and data engineering. Paul shares his background in AI and data management, discussing the evolution of data provenance and ... Show More
50m 54s
May 2022
Insights And Advice On Building A Data Lake Platform From Someone Who Learned The Hard Way
<div class="wp-block-jetpack-markdown"><h2>Summary</h2>
<p>Designing a data platform is a complex and iterative undertaking which requires accounting for many conflicting needs. Designing a platform that relies on a data lake as its central architectural tenet adds additional la ... Show More
58m 11s
Aug 18
High Performance And Low Overhead Graphs With KuzuDB
SummaryIn this episode of the Data Engineering Podcast Prashanth Rao, an AI engineer at KuzuDB, talks about their embeddable graph database. Prashanth explains how KuzuDB addresses performance shortcomings in existing solutions through columnar storage and novel join algorithms. ... Show More
1h 1m
Mar 2021
Data Quality Management For The Whole Team With Soda Data
<div class="wp-block-jetpack-markdown"><h2>Summary</h2>
<p>Data quality is on the top of everyone’s mind recently, but getting it right is as challenging as ever. One of the contributing factors is the number of people who are involved in the process and the potential impa ... Show More
58 m
Aug 2024
The Evolution of DataOps: Insights from DataKitchen's CEO
Summary
In this episode of the Data Engineering Podcast, host Tobias Macey welcomes back Chris Berg, CEO of DataKitchen, to discuss his ongoing mission to simplify the lives of data engineers. Chris explains the challenges faced by data engineers, such as constant system failures ... Show More
53m 30s
Feb 2025
The Future of Data Engineering: AI, LLMs, and Automation
Summary
In this episode of the Data Engineering Podcast Gleb Mezhanskiy, CEO and co-founder of DataFold, talks about the intersection of AI and data engineering. He discusses the challenges and opportunities of integrating AI into data engineering, particularly using large langua ... Show More
59m 39s