logo
episode-header-image
May 2022
46m 31s

Accelerate Your Machine Learning Experim...

Tobias Macey
About this episode

Summary

The experimentation phase of building a machine learning model requires a lot of trial and error. One of the limiting factors of how many experiments you can try is the length of time required to train the model which can be on the order of days or weeks. To reduce the time required to test different iterations Rolando Garcia Sanchez created FLOR which is a library that automatically checkpoints training epochs and instruments your code so that you can bypass early training cycles when you want to explore a different path in your algorithm. In this episode he explains how the tool works to speed up your experimentation phase and how to get started with it.

Announcements

  • Hello and welcome to Podcast.__init__, the podcast about Python’s role in data and science.
  • When you’re ready to launch your next app or want to try a project you hear about on the show, you’ll need somewhere to deploy it, so take a look at our friends over at Linode. With the launch of their managed Kubernetes platform it’s easy to get started with the next generation of deployment and scaling, powered by the battle tested Linode platform, including simple pricing, node balancers, 40Gbit networking, dedicated CPU and GPU instances, and worldwide data centers. Go to pythonpodcast.com/linode and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
  • Your host as usual is Tobias Macey and today I’m interviewing Rolando Garcia about FLOR, a suite of machine learning tools for hindsight logging that lets you speed up model experimentation by checkpointing training data

Interview

  • Introductions
  • How did you get introduced to Python?
  • Can you describe what FLOR is and the story behind it?
  • What is the core problem that you are trying to solve for with FLOR?
    • What are the fundamental challenges in model training and experimentation that make it necessary?
    • How do machine learning reasearchers and engineers address this problem in the absence of something like FLOR?
  • Can you describe how FLOR is implemented?
    • What were the core engineering problems that you had to solve for while building it?
  • What is the workflow for integrating FLOR into your model development process?
  • What information are you capturing in the log structures and epoch checkpoints?
    • How does FLOR use that data to prime the model training to a given state when backtracking and trying a different approach?
  • How does the presence of FLOR change the costs of ML experimentation and what is the long-range impact of that shift?
    • Once a model has been trained and optimized, what is the long-term utility of FLOR?
  • What are the opportunities for supporting e.g. Horovod for distributed training of large models or with large datasets?
  • What does the maintenance process for research-oriented OSS projects look like?
  • What are the most interesting, innovative, or unexpected ways that you have seen FLOR used?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while working on FLOR?
  • When is FLOR the wrong choice?
  • What do you have planned for the future of FLOR?

Keep In Touch

Picks

Closing Announcements

  • Thank you for listening! Don’t forget to check out our other show, the Data Engineering Podcast for the latest on modern data management.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@podcastinit.com) with your story.
  • To help other people find the show please leave a review on iTunes and tell your friends and co-workers

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Up next
Dec 2022
Update Your Model's View Of The World In Real Time With Streaming Machine Learning Using River
Preamble This is a cross-over episode from our new show The Machine Learning Podcast, the show about going from idea to production with machine learning. Summary The majority of machine learning projects that you read about or work on are built around batch processes. The model i ... Show More
1h 16m
Dec 2022
Declarative Machine Learning For High Performance Deep Learning Models With Predibase
Preamble This is a cross-over episode from our new show The Machine Learning Podcast, the show about going from idea to production with machine learning. Summary Deep learning is a revolutionary category of machine learning that accelerates our ability to build powerful inference ... Show More
59m 22s
Nov 2022
Build Better Machine Learning Models With Confidence By Adding Validation With Deepchecks
Preamble This is a cross-over episode from our new show The Machine Learning Podcast, the show about going from idea to production with machine learning. Summary Machine learning has the potential to transform industries and revolutionize business capabilities, but only if the mo ... Show More
47m 37s
Recommended Episodes
Jul 2025
Revolutionizing Python Notebooks with Marimo
SummaryIn this episode of the Data Engineering Podcast Akshay Agrawal from Marimo discusses the innovative new Python notebook environment, which offers a reactive execution model, full Python integration, and built-in UI elements to enhance the interactive computing experience. ... Show More
51m 56s
Feb 2025
#495: OSMnx: Python and OpenStreetMap
See the full show notes for this episode on the website at <a href="https://talkpython.fm/495">talkpython.fm/495</a> 
1h 1m
Oct 11
Context Engineering as a Discipline: Building Governed AI Analytics
SummaryIn this episode of the Data Engineering Podcast, host Tobias Macey welcomes back Nick Schrock, CTO and founder of Dagster Labs, to discuss Compass - a Slack-native, agentic analytics system designed to keep data teams connected with business stakeholders. Nick shares his j ... Show More
51m 58s
Sep 2021
An Exploration Of The Data Engineering Requirements For Bioinformatics
<div class="wp-block-jetpack-markdown"><h2>Summary</h2> <p>Biology has been gaining a lot of attention in recent years, even before the pandemic. As an outgrowth of that popularity, a new field has grown up that pairs statistics and compuational analysis with scientific research ... Show More
55m 10s
Aug 26
From Academia to Industry: Bridging Data Engineering Challenges
SummaryIn this episode of the Data Engineering Podcast Professor Paul Groth, from the University of Amsterdam, talks about his research on knowledge graphs and data engineering. Paul shares his background in AI and data management, discussing the evolution of data provenance and ... Show More
50m 54s
May 2022
Insights And Advice On Building A Data Lake Platform From Someone Who Learned The Hard Way
<div class="wp-block-jetpack-markdown"><h2>Summary</h2> <p>Designing a data platform is a complex and iterative undertaking which requires accounting for many conflicting needs. Designing a platform that relies on a data lake as its central architectural tenet adds additional la ... Show More
58m 11s
Aug 18
High Performance And Low Overhead Graphs With KuzuDB
SummaryIn this episode of the Data Engineering Podcast Prashanth Rao, an AI engineer at KuzuDB, talks about their embeddable graph database. Prashanth explains how KuzuDB addresses performance shortcomings in existing solutions through columnar storage and novel join algorithms. ... Show More
1h 1m
Mar 2021
Data Quality Management For The Whole Team With Soda Data
<div class="wp-block-jetpack-markdown"><h2>Summary</h2> <p>Data quality is on the top of everyone&#8217;s mind recently, but getting it right is as challenging as ever. One of the contributing factors is the number of people who are involved in the process and the potential impa ... Show More
58 m
Aug 2024
The Evolution of DataOps: Insights from DataKitchen's CEO
Summary In this episode of the Data Engineering Podcast, host Tobias Macey welcomes back Chris Berg, CEO of DataKitchen, to discuss his ongoing mission to simplify the lives of data engineers. Chris explains the challenges faced by data engineers, such as constant system failures ... Show More
53m 30s
Feb 2025
The Future of Data Engineering: AI, LLMs, and Automation
Summary In this episode of the Data Engineering Podcast Gleb Mezhanskiy, CEO and co-founder of DataFold, talks about the intersection of AI and data engineering. He discusses the challenges and opportunities of integrating AI into data engineering, particularly using large langua ... Show More
59m 39s