Dans l’espace, une flamme ne ressemble pas du tout à celle qu’on connaît sur Terre. Ici-bas, quand on allume une bougie, le feu forme naturellement une “goutte” étirée vers le haut. Mais en microgravité, le feu devient une boule : une flamme presque parfaitement sphérique. C’est spectaculaire… et c’est surtout une conséquence directe des lois de la physique.
Sur Terre, la flamme monte parce que l’air chaud monte. Lors de la combustion, le combustible réagit avec l’oxygène et libère de la chaleur. L’air autour de la flamme est donc chauffé, ce qui le rend moins dense. Résultat : cet air chaud s’élève sous l’effet de la gravité. C’est ce qu’on appelle la convection, liée à la poussée d’Archimède. En montant, l’air chaud emporte les gaz brûlés et “aspire” en bas de la flamme de l’air frais riche en oxygène. Ce flux permanent alimente le feu et étire la flamme verticalement. Le feu n’est donc pas naturellement pointu : il est “tiré” vers le haut par le mouvement de l’air.
Mais dans l’espace, ce mécanisme s’effondre. En microgravité, il n’y a pratiquement plus de convection : l’air chaud ne monte pas, car il n’y a plus de force dominante pour séparer “air chaud” et “air froid”. Les gaz brûlés restent autour de la zone de combustion au lieu de s’évacuer vers le haut. Du coup, l’oxygène n’arrive plus par le bas comme sur Terre : il arrive lentement depuis toutes les directions, uniquement par diffusion, c’est-à-dire par le mouvement aléatoire des molécules. Cette alimentation en oxygène étant symétrique, la flamme l’est aussi : elle devient sphérique.
Autre effet surprenant : comme l’oxygène arrive plus lentement, la combustion est souvent plus douce. La flamme est généralement plus froide, plus lente et plus “propre”, avec moins de suie. C’est pour cela qu’en microgravité, la flamme paraît parfois bleutée et moins lumineuse.
Mais attention : cette beauté est dangereuse. Dans un vaisseau spatial, tout est confiné. Il y a des câbles, des plastiques, des textiles techniques, des mousses isolantes… un environnement très inflammable si une étincelle se produit. Et une flamme sphérique est difficile à gérer : elle peut flotter, se déplacer avec les courants d’air produits par la ventilation ou par les mouvements des astronautes. Sur Terre, le feu “monte”, donc on sait où il va. Dans l’espace, il peut aller partout.
Le risque est encore plus critique si l’atmosphère du vaisseau contient davantage d’oxygène. Pour réduire la pression totale et alléger les contraintes sur la coque, certaines configurations de mission envisagent un air enrichi en oxygène. Mais plus l’air est riche en oxygène, plus les matériaux s’enflamment facilement et plus un départ de feu peut devenir violent.
C’est pour cela que la maîtrise du feu en microgravité est un enjeu essentiel : comprendre comment une flamme naît, se propage et comment l’éteindre rapidement, c’est littéralement une question de survie pour les missions spatiales longues.
Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.