CardioNerds (Drs. Amit Goyal and Dan Ambinder) join Dr. Emily Lee (LAC+USC Internal medicine resident) and Dr. Charlie Lin (LAC+USC Cardiology fellow) as the discuss an important case of stimulant-related (methamphetamine) cardiovascular toxicity that manifested in right ventricular dysfunction due to severe pulmonary hypertension. Dr. Jonathan Davis (Director, Heart Failure Program at Zuckerberg San Francisco General Hospital and Trauma Center) provides the ECPR for this episide. Audio editing by CardioNerds Academy Intern, student doctor Akiva Rosenzveig.
With the ongoing methamphetamine epidemic, the incidence of stimulant-related cardiovascular toxicity continues to grow. We discuss the following case: A 36-year-old man was hospitalized for evaluation of dyspnea and volume overload in the setting of previously untreated, provoked deep venous thrombosis. Transthoracic echocardiogram revealed severe right ventricular dysfunction as well as signs of pressure and volume overload. Computed tomography demonstrated a prominent main pulmonary artery and ruled out pulmonary embolism. Right heart catheterization confirmed the presence of pre-capillary pulmonary arterial hypertension without demonstrable vasoreactivity. He was prescribed sildenafil to begin management of methamphetamine-associated cardiomyopathy and right ventricular dysfunction manifesting as severe pre-capillary pulmonary hypertension.
“To study the phenomena of disease without books is to sail an uncharted sea, while to study books without patients is not to go to sea at all.” – Sir William Osler. CardioNerds thank the patients and their loved ones whose stories teach us the Art of Medicine and support our Mission to Democratize Cardiovascular Medicine.
CardioNerds is collaborating with Radcliffe Cardiology and US Cardiology Review journal (USC) for a ‘call for cases’, with the intention to co-publish high impact cardiovascular case reports, subject to double-blind peer review. Case Reports that are accepted in USC journal and published as the version of record (VOR), will also be indexed in Scopus and the Directory of Open Access Journals (DOAJ).
1. Methamphetamine, and stimulants in general, can have a multitude of effects on the cardiovascular and pulmonary systems. Effects of methamphetamine are thought to be due to catecholamine toxicity with direct effects on cardiac and vascular tissues. Acutely, methamphetamine can cause vascular constriction and vasospasm, while chronic exposure is associated with endothelial damage. Over time, methamphetamine can cause pulmonary hypertension, atherosclerosis, cardiac arrhythmias, and dilated cardiomyopathy.
2. Methamphetamines are the second most commonly misused substances worldwide after opiates. Patients with methamphetamine-associated pulmonary arterial hypertension (PAH) have more severe pulmonary vascular disease, more dilated and dysfunctional right ventricles, and worse prognoses when compared to patients with idiopathic PAH. Additionally, patients with methamphetamine-associated cardiomyopathy and PAH have significantly worse outcomes and prognoses when compared to those with structurally normal hearts without evidence of PAH. Management includes multidisciplinary support, complete cessation of methamphetamine use, and guideline-directed treatment of PAH.
3. The diagnosis of pulmonary hypertension (PH) begins with the history and physical, followed by confirmatory testing using echocardiography and invasive hemodynamics (right heart catheterization). Initial serological evaluation may include routine biochemical, hematologic, endocrine, hepatic, and infectious testing. Though PH is traditionally diagnosed and confirmed in a two-step, echocardiogram-followed-by-catheterization model, other diagnostics often include electrocardiography, blood gas analysis, spirometry, ventilation/perfusion assessment, CT scans, MRIs, and/or genetic testing to evaluate for the myriad of etiologies that may contribute to the development of PH.
4. PH is characterized by remodeling of the pulmonary vasculature and a progressive increase of pulmonary vascular load, often resulting in right ventricular hypertrophy, remodeling, and dysfunction. PH is defined hemodynamically by a mean pulmonary arterial pressure ≥ 20 mmHg at rest when measured by right heart catheterization (RHC). Pre-capillary pulmonary hypertension due to pulmonary vascular disease is further defined by an elevation in pulmonary vascular resistance (PVR) of at least 3 wood units (WU).
5. Medications used to treat pulmonary arterial hypertension fall into four general mechanistic classes: calcium channel blockers, endothelin receptor antagonists, phosphodiesterase-5 inhibitors, and prostacyclin receptor agonists.
Pulmonary hypertension is defined by mean pulmonary arterial pressure (mPAP) ≥ 20 mmHg at rest. Pulmonary hypertension has three hemodynamic phenotypes – pre-capillary PH, post-capillary PH, and combined pre-/post-capillary PH. Isolated pre-capillary PH is defined by pulmonary vascular resistance (PVR) ≥ 3 woods units and pulmonary artery wedge pressure (PAWP) ≤ 15 mmHg. Isolated post-capillary PH is defined by PVR < 3 woods units and PAWP > 15 mmHg. PVR is calculated by dividing the mean trans-pulmonary gradient (= PAWP – mPAP) by the cardiac output.
Characteristics | Clinical groups | |
Isolated pre-capillary PH | mPAP >20 mmHg PAWP ≤ 15 mmHg PVR ≥ 3 WU |
WHO 1,3,4, and 5 |
Isolated post-capillary PH | mPAP >20 mmHg PAWP > 15 mmHg PVR < 3 WU |
WHO 2 and 5 |
Combined pre- & post-capillary PH | mPAP >20 mmHg PAWP > 15 mmHg PVR ≥ 3 WU |
WHO 2 and 5 |
Classification of PAH by WHO Groups:
WHO Group 1 Pulmonary Arterial Hypertension |
WHO Group 2 Pulmonary hypertension due to left sided heart disease |
WHO Group 3 Pulmonary hypertension due to lung disease or hypoxia |
WHO Group 4 Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions |
WHO Group 5 Pulmonary hypertension with multifactorial mechanisms |
Idiopathic | Left ventricular systolic and/or diastolic dysfunction | Chronic obstructive pulmonary disease | Chronic thromboembolic pulmonary hypertension | Hematological Disease (Sickle cell disease) |
Hereditary | Left-sided valvular heart disease | Interstitial lung disease | Obstruction of the pulmonary circulation by tumor or inflammation | Systemic disorders (Sarcoidosis, Langerhans cell granulomatosis) |
Drug and toxin induced | Other mixed restrictive or obstructive lung disease | Metabolic disorders (Gaucher’s disease) | ||
Associated with connective tissue disease | Sleep-disordered breathing | |||
Associated with HIV infection | Alveolar hypoventilation disorders | |||
Associated with portal hypertension | Chronic exposure to high altitude | |||
Congenital heart disease | ||||
Schistosomiasis |
Pulmonary vasoreactivity testing is used to identify patients who may respond favorably to calcium channel blocker (CCB) treatment. Typically, this includes patients with idiopathic pulmonary arterial hypertension, heritable pulmonary arterial hypertension, or substance-related pulmonary arterial hypertension. It is usually performed at the time of RHC. Inhaled nitric oxide (NO) at 10–20 parts per million (ppm) is the standard of care for vasoreactivity testing with alternatives including intravenous adenosine and epoprostenol. A significant response to vasodilator therapy is defined by a reduction of the mean PAP by at least 10 mmHg and concurrent decrement of the absolute value to less than 40 mmHg, without a decrease in cardiac output. Vasoreactive PH should be treated with CCB therapies such as nifedipine, diltiazem, and amlodipine. Vasoreactivity is relatively rare, occurring in 10% or fewer individuals with PH who undergo testing. PH without vasoreactivity of significant response to CCB therapy should be managed with alternative class of medications (see below).
Medication treatment of pulmonary arterial hypertension comes in 4 general categories with the general mechanism is listed: