logo
episode-header-image
Oct 2017
38m 51s

The Complexity of Learning Neural Networ...

Kyle Polich
About this episode

Over the past several years, we have seen many success stories in machine learning brought about by deep learning techniques. While the practical success of deep learning has been phenomenal, the formal guarantees have been lacking. Our current theoretical understanding of the many techniques that are central to the current ongoing big-data revolution is far from being sufficient for rigorous analysis, at best. In this episode of Data Skeptic, our host Kyle Polich welcomes guest John Wilmes, a mathematics post-doctoral researcher at Georgia Tech, to discuss the efficiency of neural network learning through complexity theory.

Up next
Oct 9
Sustainable Recommender Systems for Tourism
In this episode, we speak with Ashmi Banerjee, a doctoral candidate at the Technical University of Munich, about her pioneering research on AI-powered recommender systems in tourism. Ashmi illuminates how these systems can address exposure bias while promoting more sustainable to ... Show More
38m 2s
Sep 22
Interpretable Real Estate Recommendations
In this episode of Data Skeptic's Recommender Systems series, host Kyle Polich interviews Dr. Kunal Mukherjee, a postdoctoral research associate at Virginia Tech, about the paper "Z-REx: Human-Interpretable GNN Explanations for Real Estate Recommendations" The discussion explores ... Show More
32m 57s
Sep 8
Why Am I Seeing This?
In this episode of Data Skeptic, we explore the challenges of studying social media recommender systems when exposure data isn't accessible. Our guests Sabrina Guidotti, Gregor Donabauer, and Dimitri Ognibene introduce their innovative "recommender neutral user model" for inferri ... Show More
49m 36s
Recommended Episodes
Aug 2023
Why Deep Networks and Brains Learn Similar Features with Sophia Sanborn - #644
Today we’re joined by Sophia Sanborn, a postdoctoral scholar at the University of California, Santa Barbara. In our conversation with Sophia, we explore the concept of universality between neural representations and deep neural networks, and how these principles of efficiency pro ... Show More
45m 15s
Aug 2021
Adaptivity in Machine Learning with Samory Kpotufe - #512
Today we’re joined by Samory Kpotufe, an associate professor at Columbia University and program chair of the 2021 Conference on Learning Theory (COLT).  In our conversation with Samory, we explore his research at the intersection of machine learning, statistics, and learning theo ... Show More
49m 58s
Apr 2023
The Power of Graph Neural Networks: Understanding the Future of AI - Part 1/2 (Ep.223)
In this episode, I explore the cutting-edge technology of graph neural networks (GNNs) and how they are revolutionizing the field of artificial intelligence. I break down the complex concepts behind GNNs and explain how they work by modeling the relationships between data points ... Show More
27m 40s
May 2018
Practical Deep Learning with Rachel Thomas - TWiML Talk #138
In this episode, i'm joined by Rachel Thomas, founder and researcher at Fast AI. If you’re not familiar with Fast AI, the company offers a series of courses including Practical Deep Learning for Coders, Cutting Edge Deep Learning for Coders and Rachel’s Computational Linear Algeb ... Show More
44m 19s
Dec 2023
SE Radio 594: Sean Moriarity on Deep Learning with Elixir and Axon
Sean Moriarity, creator of the Axon deep learning framework, co-creator of the Nx library, and author of Machine Learning in Elixir and Genetic Algorithms in Elixir, published by the Pragmatic Bookshelf, speaks with SE Radio host Gavin Henry about what deep learning (neural netwo ... Show More
57m 43s
Jul 2023
Moore’s law in peril and the future of computing
Demand for computer power continues to soar, but can the hardware keep up? 
1h 1m
Apr 2023
The Power of Graph Neural Networks: Understanding the Future of AI - Part 2/2 (Ep.224)
In this episode of our podcast, we dive deep into the fascinating world of Graph Neural Networks. First, we explore Hierarchical Networks, which allow for the efficient representation and analysis of complex graph structures by breaking them down into smaller, more manageable com ... Show More
35m 32s
Feb 2023
Terry Sejnowski: NeurIPS and the Future of AI
In this episode, Terry Sejnowski, an AI pioneer, chairman of the NeurIPS Foundation, and co-creator of Boltzmann Machines, delves into the latest developments in deep learning and their potential impact on our understanding of the human brain. Terry Sejnowski begins by discussing ... Show More
37m 5s