logo
episode-header-image
Sep 19
33m 13s

Quantum sensitivity breakthrough with El...

Sebastian Hassinger
About this episode

Dr. Eli Levenson-Falk joins Sebastian Hassinger, host of The New Quantum Era to discuss his group’s recent advances in quantum measurement and control, focusing on a new protocol that enables measurements more sensitive than the Ramsey limit. Published in Nature Communications in April 2025, this work demonstrates a coherence stabilized technique that not only enhances sensitivity for quantum sensing but also promises improvements in calibration speed and robustness for superconducting quantum devices and other platforms. The conversation travels from Eli’s origins in physics, through the conceptual challenges of decoherence, to experimental storytelling, and highlights the collaborative foundation underpinning this breakthrough.

Guest Bio
Eli Levenson-Falk is an Associate Professor at USC. He earned his PhD at UC Berkeley with Professor Irfan Siddiqui, and now leads an experimental physics research group working with superconducting devices for quantum information science.

Key Topics

  • The new protocol described in the paper: “Beating the Ramsey Limit on Sensing with Deterministic Qubit Control." 
  • Beyond the Ramsey measurement: How the team’s technique stabilizes part of the quantum state for enhanced sensitivity—especially for energy level splittings—using continuous, slowly varying microwave control, applicable beyond just superconducting platforms.
  •  From playground swings to qubits: Eli explains how the physics of a playground swing inspired his passion for the field and lead to his understanding of the transmon qubit, and why analogies matter for intuition.
  •  Quantum decoherence and stabilization: How the method controls the “vector” of a quantum state on the Bloch sphere, dumping decoherence into directions that can be tracked or stabilized, markedly increasing measurement fidelity.
  •  Calibration and practical speedup: The protocol achieves greater measurement accuracy in less time or greater accuracy for a given time investment. This has implications for both calibration routines in quantum computers and for direct quantum measurements of fields (e.g., magnetic) or material properties.
  •  Applicability: While demonstrated on superconducting transmons, the protocol’s generality means it may bring improved sensitivity to a variety of platforms—though the greatest benefits will be seen where relaxation processes dominate decoherence over dephasing.
  •  Collaboration and credit: The protocol was the product of a collaborative effort with theorist Daniel Lidar and his group, also at USC. In Eli's group, Malida Hecht conducted the experiment.

Why It Matters
By breaking through the Ramsey sensitivity limit, this work provides a new tool for both quantum device calibration and quantum sensing. It allows for more accurate and faster frequency calibration within quantum processors, as well as finer detection of small environmental changes—a dual-use development crucial for both scalable quantum computing and sensitive quantum detection technologies.

Episode Highlights

  •  Explanation of the “Ramsey limit” in quantum measurement and why surpassing it is significant.
  •  Visualization of quantum states using the Bloch sphere, and the importance of stabilizing the equatorial (phase) components for sensitivity.
  •  Experimental journey from “plumber” lab work to analytic insights, showing the back-and-forth of theory confronting experiment.
  •  Immediate and future impacts, from more efficient calibration in quantum computers to potentially new standards for quantum sensing.
  •  Discussion of related and ongoing work, such as improvements to deterministic benchmarking for gate calibration, and the broader applicability to various quantum platforms.

If you enjoy The New Quantum Era, subscribe and tell your quantum-curious friends! Find all episodes at www.newquantum.era.com.

Up next
Sep 27
Carbon nanotube qubits with Pierre Desjardins
Pierre Desjardins is the cofounder of C12, a Paris-based quantum computing hardware startup that specializes in carbon nanotube-based spin qubits. Notably, Pierre founded the company alongside his twin brother, Mathieu, making them the only twin-led deep-tech startups that we kno ... Show More
26m 42s
Sep 14
Mechanical Quantum Memories with Mohammad Mirhosseini
Assistant Professor Mohammad Mirhosseini (Caltech EE/APh) explains how his group built a mechanical quantum memory that stores microwave-photon quantum states far longer than typical superconducting qubits, and why that matters for hybrid quantum architectures. The discussion cov ... Show More
37m 51s
Sep 5
A Programming Language for Quantum Simulations with Xiaodi Wu
In this episode, host Sebastian Hassinger sits down with Xiaodi Wu, Associate Professor at the University of Maryland, to discuss Wu’s journey through quantum information science, his drive for bridging computer science and physics, and the creation of the quantum programming lan ... Show More
54m 21s
Recommended Episodes
Sep 2024
Quantum computers aren't what you think — they're cooler | Hartmut Neven
Quantum computers obtain superpowers by tapping into parallel universes, says Hartmut Neven, the founder and lead of Google Quantum AI. He explains how this emerging tech can far surpass traditional computers by relying on quantum physics rather than binary logic, and shares a ro ... Show More
12m 18s
May 2021
1 - Dawn of a Quantum Era
On May 6th, 1981, at the MIT Endicott House, a group of computer scientists gathered together with elite physicists to make the case that quantum phenomena could be used for computation. Here, ideas that would influence the next four decades of quantum computing research and deve ... Show More
39m 39s
Apr 2025
What Is the True Promise of Quantum Computing?
Quantum computing promises unprecedented speed, but in practice, it’s proven remarkably difficult to find important questions that quantum machines can solve faster than classical ones. One of the most notable demonstrations of this came from Ewin Tang, who rose to prominence in ... Show More
38m 47s
Sep 2024
Working in quantum tech: where are the opportunities for success?
Quantum professionals describe the emerging industry, and the skills required to thrive 
45m 53s
Apr 2021
Making Quantum Computers a Commercial Reality
IonQ is the first company solely focused on quantum computing to go public, with its quantum computers accessible via the cloud today. The company’s co-founder/chief scientist Chris Monroe and president/CEO Peter Chapman join Azeem Azhar to explore how they turned cutting-edge re ... Show More
49m 17s
May 2025
Séminaire - Immanuel Bloch : Quantum Simulation and Quantum Computing with Fermions
Antoine GeorgesPhysique de la matière condenséeAnnée 2024-2025Fermions froids et simulation quantiqueSéminaire - Immanuel Bloch : Quantum Simulation and Quantum Computing with FermionsImmanuel BlochMax Planck Institute et LMU, MunichRésuméQuantum simulation has emerged as an inte ... Show More
1 h
May 2021
2 - Quantum Computing Has A Purpose! (The Factoring Algorithm)
In the mid-90’s, there was no quantum computing field. There was excitement, sure, but nearly a decade and a half after the conference at MIT Endicott House, the possibilities of marrying physics and computer science had yet to yield a significant technological breakthrough. That ... Show More
38m 59s
Sep 2024
Harnessing Quantum Energy: Unlocking the Power of Biofields and Consciousness : 1202
In this episode of The Human Upgrade, we dive deep into the mystifying world of quantum energy with guest Philipp Samor von Holtzendorff-Fehling, founder of Leela Quantum Tech and Quantum Upgrade. Together with host Dave Asprey, Philipp unpacks the potential of harnessing quantum ... Show More
55m 21s
Feb 2025
Quantum superstars gather in Paris for the IYQ 2025 opening ceremony
In this podcast Physics World’s Matin Durrani describes the gala event 
27m 23s
Mar 2024
Venkatesh Rao: Protocols, Intelligence, and Scaling
“There is this move from generality in a relative sense of ‘we are not as specialized as insects’ to generality in the sense of omnipotent, omniscient, godlike capabilities. And I think there's something very dangerous that happens there, which is you start thinking of the word ‘ ... Show More
2h 18m