About this episode
Summary
In this episode of the Data Engineering Podcast Mai-Lan Tomsen Bukovec, Vice President of Technology at AWS, talks about the evolution of Amazon S3 and its profound impact on data architecture. From her work on compute systems to leading the development and operations of S3, Mylan shares insights on how S3 has become a foundational element in modern data systems, enabling scalable and cost-effective data lakes since its launch alongside Hadoop in 2006. She discusses the architectural patterns enabled by S3, the importance of metadata in data management, and how S3's evolution has been driven by customer needs, leading to innovations like strong consistency and S3 tables.
Announcements
- Hello and welcome to the Data Engineering Podcast, the show about modern data management
- Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.
- This is a pharmaceutical Ad for Soda Data Quality. Do you suffer from chronic dashboard distrust? Are broken pipelines and silent schema changes wreaking havoc on your analytics? You may be experiencing symptoms of Undiagnosed Data Quality Syndrome — also known as UDQS. Ask your data team about Soda. With Soda Metrics Observability, you can track the health of your KPIs and metrics across the business — automatically detecting anomalies before your CEO does. It’s 70% more accurate than industry benchmarks, and the fastest in the category, analyzing 1.1 billion rows in just 64 seconds. And with Collaborative Data Contracts, engineers and business can finally agree on what “done” looks like — so you can stop fighting over column names, and start trusting your data again.Whether you’re a data engineer, analytics lead, or just someone who cries when a dashboard flatlines, Soda may be right for you. Side effects of implementing Soda may include: Increased trust in your metrics, reduced late-night Slack emergencies, spontaneous high-fives across departments, fewer meetings and less back-and-forth with business stakeholders, and in rare cases, a newfound love of data. Sign up today to get a chance to win a $1000+ custom mechanical keyboard. Visit dataengineeringpodcast.com/soda to sign up and follow Soda’s launch week. It starts June 9th.
- Your host is Tobias Macey and today I'm interviewing Mai-Lan Tomsen Bukovec about the evolutions of S3 and how it has transformed data architecture
Interview
- Introduction
- How did you get involved in the area of data management?
- Most everyone listening knows what S3 is, but can you start by giving a quick summary of what roles it plays in the data ecosystem?
- What are the major generational epochs in S3, with a particular focus on analytical/ML data systems?
- The first major driver of analytical usage for S3 was the Hadoop ecosystem. What are the other elements of the data ecosystem that helped shape the product direction of S3?
- Data storage and retrieval have been core primitives in computing since its inception. What are the characteristics of S3 and all of its copycats that led to such a difference in architectural patterns vs. other shared data technologies? (e.g. NFS, Gluster, Ceph, Samba, etc.)
- How does the unified pool of storage that is exemplified by S3 help to blur the boundaries between application data, analytical data, and ML/AI data?
- What are some of the default patterns for storage and retrieval across those three buckets that can lead to anti-patterns which add friction when trying to unify those use cases?
- The age of AI is leading to a massive potential for unlocking unstructured data, for which S3 has been a massive dumping ground over the years. How is that changing the ways that your customers think about the value of the assets that they have been hoarding for so long?
- What new architectural patterns is that generating?
- What are the most interesting, innovative, or unexpected ways that you have seen S3 used for analytical/ML/Ai applications?
- What are the most interesting, unexpected, or challenging lessons that you have learned while working on S3?
- When is S3 the wrong choice?
- What do you have planned for the future of S3?
Contact Info
Parting Question
- From your perspective, what is the biggest gap in the tooling or technology for data management today?
Closing Announcements
- Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.
- Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
- If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com with your story.
Links
The intro and outro music is from
The Hug by
The Freak Fandango Orchestra /
CC BY-SAOct 5
The Data Model That Captures Your Business: Metric Trees Explained
SummaryIn this episode of the Data Engineering Podcast Vijay Subramanian, founder and CEO of Trace, talks about metric trees - a new approach to data modeling that directly captures a company's business model. Vijay shares insights from his decade-long experience building data pr ... Show More
1h 1m
Sep 28
From GPUs-as-a-Service to Workloads-as-a-Service: Flex AI’s Path to High-Utilization AI Infra
SummaryIn this crossover episode of the AI Engineering Podcast, host Tobias Macey interviews Brijesh Tripathi, CEO of Flex AI, about revolutionizing AI engineering by removing DevOps burdens through "workload as a service". Brijesh shares his expertise from leading AI/HPC archite ... Show More
56m 31s
Sep 18
From RAG to Relational: How Agentic Patterns Are Reshaping Data Architecture
SummaryIn this episode of the AI Engineering Podcast Mark Brooker, VP and Distinguished Engineer at AWS, talks about how agentic workflows are transforming database usage and infrastructure design. He discusses the evolving role of data in AI systems, from traditional models to m ... Show More
52m 58s
Nov 2024
#262 Self-Service Business Intelligence with Sameer Al-Sakran, CEO at Metabase
We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here.We’re often caught chasing the dream of “self-serve” data—a place where data empowers stakeholders to answer th ... Show More
51m 33s
Mar 2025
#295 How To Get Hired As A Data Or AI Engineer with Deepak Goyal, CEO & Founder at Azurelib Academy
The role of data and AI engineers is more critical than ever. With organizations collecting massive amounts of data, the challenge lies in building efficient data infrastructures that can support AI systems and deliver actionable insights. But what does it take to become a succes ... Show More
52m 27s
Apr 2025
Specialized AI brains for physical industry
Everyone wants a piece of general purpose models. Instacart has deployed ChatGPT for recipes and meal planning. The Mayo Clinic is using it to summarize patient records. Schneider Electric is using an OpenAI LLM to generate sustainability reports. With such powerful models, what’ ... Show More
39m 2s
Jul 2022
IoT, IIoT and Managing Edge Data
Brian Gilmore (@BrianMGilmore, Director IoT/Emerging Technology @InfluxDB) talks about Edge and Industrial Edge Computing, as well as application and data challenges at the edge.SHOW: 634CLOUD NEWS OF THE WEEK - http://bit.ly/cloudcast-cnotwCHECK OUT OUR NEW PODCAST - "CLOUDCAST ... Show More
35m 37s
Nov 2024
Model Plateaus and Enterprise AI Adoption with Cohere's Aidan Gomez
In this episode of No Priors, Sarah is joined by Aidan Gomez, cofounder and CEO of Cohere. Aidan reflects on his journey to co-authoring the groundbreaking 2017 paper, “Attention is All You Need,” during his internship, and shares his motivations for building Cohere, which delive ... Show More
44m 15s
Jan 2025
3164: Breaking Data Silos: How Hammerspace is Powering AI Storage and Hybrid Cloud
As part of the IT Press Tour in Silicon Valley, I had the opportunity to sit down with David Flynn, CEO of Hammerspace, to explore how the company is redefining the future of enterprise data storage. At a time when AI-driven workloads and hybrid cloud computing are pushing storag ... Show More
24m 26s
Sep 15
#321 Developing Financial AI Products at Experian with Vijay Mehta, EVP of Global Solutions & Analytics at Experian
Financial institutions are racing to harness the power of AI, but the path to implementation is filled with challenges. From feature engineering to model deployment, the technical complexities of AI adoption in finance require careful navigation of both technological and regulato ... Show More
49m 28s
Feb 2025
How Can GenAI Make Analytics More Accessible to Product Teams? (with Mario Ciabarra)
Whether you prefer the term data-driven, or data-informed, or data-dazzled, it doesn't matter—today's tech cannot survive without high quality data sets AND the tools to use them effectively. But we also can't afford to think about data as the responsibility of jus ... Show More
27m 46s
Apr 2025
Andriy Burkov - The TRUTH About Large Language Models and Agentic AI (with Andriy Burkov, Author "The Hundred-Page Language Models Book")
Andriy Burkov is a renowned machine learning expert and leader. He's also the author of (so far) three books on machine learning, including the recently-released "The Hundred-Page Language Models Book", which takes curious people from the very basics of language models all the wa ... Show More
1h 24m
Mar 2025
189. Numbers Need Narrative: Use Data to Influence and Inspire
Why numbers are only as compelling as the narratives we attach to them.
Facts and figures can be your friend, but before you load your presentation full of data, Miro Kazakoff has a word of caution: “Data’s objective, but people are not.”You might think that your data speaks for ... Show More
21m 9s