logo
episode-header-image
Apr 2025
8m 25s

Review of the CULPRIT-SHOCK Trial

Cardiology Trials
About this episode

N Engl J Med 2017;377:2419-2432

Background: A small fraction of patients with acute myocardial infarction (5-10%) have cardiogenic shock. These patients have a high baseline mortality. Early revascularization had been established as better than initial stabilization with medical therapy. Many patients with cardiogenic shock due to acute myocardial infarction (AMI) have multivessel disease. The question arises about whether to do culprit-only percutaneous coronary intervention (PCI) or more complete PCI at the time of the initial intervention.

Cardiology Trial’s Substack is a reader-supported publication. To receive new posts and support our work, consider becoming a free or paid subscriber.

The Culprit Lesion Only PCI versus Multivessel PCI in Cardiogenic Shock (CULPRIT-SHOCK) trial was designed to test the hypothesis that PCI of the culprit lesion only, with the option of staged revascularization of nonculprit lesions, would result in better clinical outcomes than immediate multivessel PCI among patients who have multivessel coronary artery disease and acute myocardial infarction with cardiogenic shock.

Patients: The trial enrolled 706 patients with acute myocardial infarction (ST-segment elevation or non-ST-segment elevation) complicated by cardiogenic shock who had multivessel coronary artery disease. Cardiogenic shock was defined as SBP < 90 mmHg for more than 30 minutes or requiring pressors, clinical signs of pulmonary congestion, and signs of organ hypoperfusion (altered mental status, cold/clammy skin, oliguria, or lactate > 2 mmol/L).

Exclusion criteria were extensive and designed to exclude patients with extremely poor prognosis: prolonged resuscitation, no intrinsic heart action, fixed dilated pupils, an indication for urgent CABG, a mechanical cause of shock, age > 90 years, massive pulmonary embolism, or severe renal insufficiency at baseline.

Baseline Characteristics: The median age was 70 years, and approximately 75% were male. About 63% of patients had three-vessel disease. More than half the patients had ST-segment elevation myocardial infarction (about 62%), and anterior ST-segment elevation MI accounted for approximately 54% of these cases. About 53% of patients required resuscitation before randomization. The median left ventricular ejection fraction was between 30-33%.

Procedures: In the culprit-lesion-only PCI group, only the culprit lesion was treated during the initial procedure, with staged revascularization encouraged based on residual ischemic lesions. In the multivessel PCI group, PCI of all major coronary arteries with >70% stenosis was performed, including attempts to recanalize chronic total occlusions. Crossover from the culprit-lesion-only PCI group to the multivessel PCI group occurred in 12.5% of patients, while crossover in the opposite direction happened in 9.4% of patients. The overall dose of contrast material was significantly higher and the duration of fluoroscopy significantly longer in the multivessel PCI group. Other interventional therapeutic measures were allowed, independent of the assigned treatment strategy.

Endpoints: The primary endpoint was a composite of death from any cause or severe renal failure leading to renal-replacement therapy within 30 days after randomization. Secondary endpoints included the individual components of the primary endpoint, recurrent myocardial infarction, rehospitalization for heart failure, repeat revascularization, time to hemodynamic stabilization, catecholamine therapy duration, ICU stay duration, and measurements of renal and myocardial injury. Safety end points included bleeding, which was defined as type 2, 3, or 5 on the Bleeding Academic Research Consortium (BARC) scale.

Trialists estimated an event rate of the composite primary endpoint of 38% in the culprit-only group vs 50% in the complete group. Using a global type I error level of 0.05, the authors calculated that a sample of 684 patients would give the trial 80% power to rule out the null hypothesis of no difference between the two treatment groups in the event rate for the primary end point.

Results: At 30 days, the composite primary endpoint occurred in 45.9% of patients in the culprit-lesion-only PCI group versus 55.4% in the multivessel PCI group (relative risk, 0.83; 95% CI, 0.71 to 0.96; P=0.01). Death occurred in 43.3% of the culprit-lesion-only PCI group versus 51.6% of the multivessel PCI group (relative risk, 0.84; 95% CI, 0.72 to 0.98; P=0.03). The rate of renal-replacement therapy was 11.6% in the culprit-lesion-only PCI group and 16.4% in the multivessel PCI group (relative risk, 0.71; 95% CI, 0.49 to 1.03; P=0.07).

Rates of recurrent myocardial infarction, rehospitalization for heart failure, bleeding, and stroke did not differ significantly between groups. Subgroup analyses showed consistent results across all prespecified subgroups. The time to hemodynamic stabilization, the use of catecholamine therapy and the duration of such therapy, the duration of the ICU stay, and the use of mechanical ventilation and the duration of such therapy also did not differ significantly between the two groups.

Conclusion: In patients with myocardial infarction and cardiogenic shock, culprit-only PCI was superior to multivessel PCI. Both components of the primary endpoint, death and severe renal failure were lower in the culprit-only arm.

The authors and editorialists speculate why these findings contrast with trials in hemodynamically stable myocardial infarction patients, where early multivessel PCI showed benefit over culprit-only PCI.

If you accept the thesis that multi-vessel PCI was superior to culprit-only PCI in stable AMI patients, the likely reason for the disparate results are that patients with cardiogenic shock differ substantially from stable patients. The sicker patients with cardiogenic shock benefit from a less-is-more approach where culprit-only PCI reduces treatment harm relative to multivessel PCI.

We at CardiologyTrials, however, find the evidence for complete revascularization in stable AMI patients less than clear. The COMPLETE trial found benefit from multivessel PCI over culprit-only, but both composite endpoints were driven largely by non-fatal MI. CV death was not substantially different. The difference in MI could have been related to excluding procedure-related MI.

What’s more, the FULL-REVASC trial, which also compared culprit-only and multivessel PCI, failed to replicate the COMPLETE trial results. In FULL-REVASC the rates of the composite primary outcome of death, MI or unplanned revascularization were not significantly different. Sadly, FULL-REVASC was stopped early when COMPLETE results were published, which led to a possible loss of power.

It’s possible, likely even, that the null results of CULPRIT-SHOCK are not really that disparate from prior trials in patients with more stable AMI.

Cardiology Trial’s Substack is a reader-supported publication. To receive new posts and support our work, consider becoming a free or paid subscriber.



Get full access to Cardiology Trial’s Substack at cardiologytrials.substack.com/subscribe
Up next
Aug 15
Summary and discussion of BEST and SENIORS
For full review of the trials, please visit https://cardiologytrials.substack.com/ Get full access to Cardiology Trial’s Substack at cardiologytrials.substack.com/subscribe 
31m 58s
Jul 1
Review of the A-HeFT trial
N Engl J Med 2004;351:2049-2057Background: Endothelial dysfunction, reduced nitric oxide availability, and increased oxidative stress occur in patients with heart failure and contribute to cardiac remodeling. In the V-HeFT I trial, combining isosorbide dinitrate (a nitric oxide d ... Show More
9m 8s
Jun 24
Review of the CHARM-Alternative trial
THE LANCET 2003;362:772-776Background: Angiotensin converting enzyme inhibitors (ACEi) reduce mortality and morbidity in patients with systolic heart failure (see CONSENSUS and SOLVD trials). However, registry data showed that up to 20% of patients with systolic heart failure wer ... Show More
10m 3s
Recommended Episodes
Oct 2024
393. SGLT Inhibitors: Clinical Implementation of SGLT Inhibitors with Dr. Alison Bailey
CardioNerds Drs. Jason Feinman, Gurleen Kaur, and Rick Ferraro discuss the implementation of SGLT inhibitors in clinical practice with Dr. Alison Bailey. Notes were drafted by Dr. Jason Feinman. In this episode, we discuss the implementation of SGLTi in clinical practice scenario ... Show More
19m 21s
Jun 10
Dapagliflozin in Patients Undergoing Transcatheter Aortic Valve Implantation
The DapaTAVI trial, conducted across 39 centers in Spain, is the first study to evaluate the use of sodium-glucose co-transporter-2 (SGLT-2) inhibitors, specifically dapagliflozin, in patients with heart failure undergoing transcatheter aortic valve implantation (TAVI). The trial ... Show More
9m 4s
Jan 2025
409. Journal Club: The ARREST-AF Trial with Drs. Prashanthan Sanders and Mehak Dhande
Join CardioNerds EP Council Chair Dr. Naima Maqsood and Episode Lead Dr. Jeanne De Lavallaz as they discuss the results of the ARREST-AF Trial with expert faculty Dr. Prashanthan Sanders and Dr. Mehak Dhande. Audio editing by CardioNerds intern Bhavya Shah. The ARREST-AF trial en ... Show More
36m 4s
Aug 2024
386. Beyond the Boards: Cardiomyopathies with Dr. Steve Ommen
CardioNerds (Drs. Teodora Donisan, Jenna Skowronski, and Johnny Hourmozdi) discuss Cardiomyopathies with Dr. Steve Ommen. Through a case-based discussion, we review the diagnostic evaluation of suspected restrictive cardiomyopathy, and Dr. Ommen shares his expertise in the nuance ... Show More
37m 30s
Aug 2024
385. Guidelines: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure – Question #34 with Dr. Mark Drazner
The following question refers to Sections 6.1 and 7.4 of the 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. The question is asked by University of Colorado internal medicine resident Dr. Hirsh Elhence, answered first by University of Chicago advanced heart failu ... Show More
5m 26s
Nov 2024
399. Guidelines: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure – Question #37 with Dr. Clyde Yancy
The following question refers to Section 7.4 of the 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. The question is asked by the Director of the CardioNerds Internship Dr. Akiva Rosenzveig, answered first by Vanderbilt AHFT cardiology fellow Dr. Jenna Skowronski, ... Show More
8m 40s
Oct 2024
397. Guidelines: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure – Question #36 with Dr. Shelley Zieroth
The following question refers to Section 2.2 of the 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. The question is asked by CardioNerds Academy Intern Dr. Adriana Mares, answered first by CardioNerds FIT Trialist Dr. Christabel Nyange, and then by expert faculty ... Show More
5m 43s
Apr 2025
415. Case Report: Unraveling MINOCA: Role of Cardiac MRI and Functional Testing in Diagnosing Coronary Vasospasm – The Christ Hospital
CardioNerds (Drs. Daniel Ambinder and Eunice Dugan) are joined by Namrita Ashokprabhu, incoming medical student, along with Drs. Yulith Roca Alvarez and Mehmet Yildiz from The Christ Hospital. Expert insights provided by Dr. Odayme Quesada. Audio editing by CardioNerds intern Chr ... Show More
42m 33s
Jul 2024
Jul 12 2024 This Week in Cardiology
Venous closure devices, GLP1-s linked to blindness and cancer, resisting the urge to do an ECG, and transcatheter edge-to-edge repair (TEER) for secondary mitral regurgitation are the topics discussed this week. This podcast is intended for healthcare professionals only. To read ... Show More
29m 3s
Nov 2024
402. Guidelines: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure – Question #39 with Dr. Robert Mentz
The following question refers to Sections 7.3.3 and 7.3.6 of the 2022 ACC/AHA/HFSA Guideline for the Management of Heart Failure. The question is asked by Palisades Medical Center medicine resident & CardioNerds Academy Fellow Dr. Maryam Barkhordarian, answered first by UTSW AHFT ... Show More
8 m