logo
episode-header-image
Aug 2023
27m 8s

Cuttlefish Model Tuning

Kyle Polich
About this episode

Hongyi Wang, a Senior Researcher at the Machine Learning Department at Carnegie Mellon University, joins us. His research is in the intersection of systems and machine learning. He discussed his research paper, Cuttlefish: Low-Rank Model Training without All the Tuning, on today’s show.

Hogyi started by sharing his thoughts on whether developers need to learn how to fine-tune models. He then spoke about the need to optimize the training of ML models, especially as these models grow bigger. He discussed how data centers have the hardware to train these large models but not the community. He then spoke about the Low-Rank Adaptation (LoRa) technique and where it is used.

Hongyi discussed the Cuttlefish model and how it edges LoRa. He shared the use cases of Cattlefish and who should use it. Rounding up, he gave his advice on how people can get into the machine learning field. He also shared his future research ideas.

Up next
Jul 6
The Network Diversion Problem
In this episode, Professor Pål Grønås Drange from the University of Bergen, introduces the field of Parameterized Complexity - a powerful framework for tackling hard computational problems by focusing on specific structural aspects of the input. This framework allows researchers ... Show More
46m 14s
Jun 28
Complex Dynamic in Networks
In this episode, we learn why simply analyzing the structure of a network is not enough, and how the dynamics - the actual mechanisms of interaction between components - can drastically change how information or influence spreads. Our guest, Professor Baruch Barzel of Bar-Ilan Un ... Show More
56 m
Jun 22
Github Network Analysis
In this episode we'll discuss how to use Github data as a network to extract insights about teamwork. Our guest, Gabriel Ramirez, manager of the notifications team at GitHub, will show how to apply network analysis to better understand and improve collaboration within his enginee ... Show More
36m 46s
Recommended Episodes
Feb 2025
π0: A Foundation Model for Robotics with Sergey Levine - #719
Today, we're joined by Sergey Levine, associate professor at UC Berkeley and co-founder of Physical Intelligence, to discuss π0 (pi-zero), a general-purpose robotic foundation model. We dig into the model architecture, which pairs a vision language model (VLM) with a diffusion-ba ... Show More
52m 30s
May 2023
TinyML: Bringing machine learning to the edge
When we think about machine learning today we often think in terms of immense scale — large language models that require huge amounts of computational power, for example. But one of the most interesting innovations in machine learning right now is actually happening on a really s ... Show More
45m 45s
Jul 2024
Bridging the Sim2real Gap in Robotics with Marius Memmel - #695
Today, we're joined by Marius Memmel, a PhD student at the University of Washington, to discuss his research on sim-to-real transfer approaches for developing autonomous robotic agents in unstructured environments. Our conversation focuses on his recent ASID and URDFormer papers. ... Show More
57m 21s
Aug 2024
AI that connects the digital and physical worlds | Anima Anandkumar
While language models may help generate new ideas, they cannot attack the hard part of science, which is simulating the necessary physics," says AI professor Anima Anandkumar. She explains how her team developed neural operators — AI trained on the finest details of the real worl ... Show More
12m 14s
Apr 8
Teaching LLMs to Self-Reflect with Reinforcement Learning with Maohao Shen - #726
Today, we're joined by Maohao Shen, PhD student at MIT to discuss his paper, “Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search.” We dig into how Satori leverages reinforcement learning to improve language model reasoning ... Show More
51m 45s
Apr 8
Andriy Burkov - The TRUTH About Large Language Models and Agentic AI (with Andriy Burkov, Author "The Hundred-Page Language Models Book")
Andriy Burkov is a renowned machine learning expert and leader. He's also the author of (so far) three books on machine learning, including the recently-released "The Hundred-Page Language Models Book", which takes curious people from the very basics of language models all the wa ... Show More
1h 24m
Jul 2024
AI that connects the digital and physical worlds | Anima Anandkumar
“While language models may help generate new ideas, they cannot attack the hard part of science, which is simulating the necessary physics,” says AI professor Anima Anandkumar. She explains how her team developed neural operators — AI trained on the finest details of the real wor ... Show More
11m 6s
Apr 2024
777: Generative AI in Practice, with Bernard Marr
Generative AI is reshaping our world, and Bernard Marr, world-renowned futurist and best-selling author, joins Jon Krohn to guide us through this transformation. In this episode, Bernard shares his insights on how AI is transforming industries, revolutionizing daily life, and add ... Show More
1h 8m
Jul 2024
#229 Inside Meta's Biggest and Best Open-Source AI Model Yet with Thomas Scialom, Co-Creator of Llama3
Meta has been at the absolute edge of the open-source AI ecosystem, and with the recent release of Llama 3.1, they have officially created the largest open-source model to date. So, what's the secret behind the performance gains of Llama 3.1? What will the future of open-source A ... Show More
39m 23s
Jan 2025
Erik Bernhardsson on Creating Tools That Make AI Feel Effortless
Today on No Priors, Elad chats with Erik Bernhardsson, founder and CEO of Modal Labs, a platform simplifying ML workflows by providing a serverless infrastructure designed to streamline deployment, scaling, and development for AI engineers. Erik talks about his early work on Spot ... Show More
23m 36s