About this episode
Summary
Every organization needs to be able to use data to answer questions about their business. The trouble is that the data is usually spread across a wide and shifting array of systems, from databases to dashboards. The other challenge is that even if you do find the information you are seeking, there might not be enough context available to determine how to use it or what it means. Castor is building a data discovery platform aimed at solving this problem, allowing you to search for and document details about everything from a database column to a business intelligence dashboard. In this episode CTO Amaury Dumoulin shares his perspective on the complexity of letting everyone in the company find answers to their questions and how Castor is designed to help.
Announcements
- Hello and welcome to the Data Engineering Podcast, the show about modern data management
- You listen to this show to learn about all of the latest tools, patterns, and practices that power data engineering projects across every domain. Now there’s a book that captures the foundational lessons and principles that underly everything that you hear about here. I’m happy to announce I collected wisdom from the community to help you in your journey as a data engineer and worked with O’Reilly to publish it as 97 Things Every Data Engineer Should Know. Go to dataengineeringpodcast.com/97things today to get your copy!
- When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
- Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch.
- Have you ever had to develop ad-hoc solutions for security, privacy, and compliance requirements? Are you spending too much of your engineering resources on creating database views, configuring database permissions, and manually granting and revoking access to sensitive data? Satori has built the first DataSecOps Platform that streamlines data access and security. Satori’s DataSecOps automates data access controls, permissions, and masking for all major data platforms such as Snowflake, Redshift and SQL Server and even delegates data access management to business users, helping you move your organization from default data access to need-to-know access. Go to dataengineeringpodcast.com/satori today and get a $5K credit for your next Satori subscription.
- Your host is Tobias Macey and today I’m interviewing Amaury Dumoulin about Castor, a managed platform for easy data cataloging and discovery
Interview
- Introduction
- How did you get involved in the area of data management?
- Can you describe what Castor is and the story behind it?
- The market for data catalogues is nascent but growing fast. What are the broad categories for the different products and projects in the space?
- What do you see as the core features that are required to be competitive?
- In what ways has that changed in the past 1 – 2 years?
- What are the opportunities for innovation and differentiation in the data catalog/discovery ecosystem?
- How do you characterize your current position in the market?
- Who are the target users of Castor?
- Can you describe the technical architecture and implementation of the Castor platform?
- How have the goals and design changed since you first began working on it?
- Can you talk through the workflow of getting Castor set up in an organization and onboarding the users?
- What are the design elements and platform features that allow for serving the various roles and stakeholders in an organization?
- What are the organizational benefits that you have seen from users adopting Castor or other data discovery/catalog systems?
- What are the most interesting, innovative, or unexpected ways that you have seen Castor used?
- What are the most interesting, unexpected, or challenging lessons that you have learned while working on Castor?
- When is Castor the wrong choice?
- What do you have planned for the future of Castor?
Contact Info
Parting Question
- From your perspective, what is the biggest gap in the tooling or technology for data management today?
Links
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Support Data Engineering Podcast
Nov 24
Blurring Lines: Data, AI, and the New Playbook for Team Velocity
Summary<br />In this crossover episode, Max Beauchemin explores how multiplayer, multi‑agent engineering is transforming the way individuals and teams build data and AI systems. He digs into the shifting boundary between data and AI engineering, the rise of “context as code,” and ... Show More
1 h
Nov 16
State, Scale, and Signals: Rethinking Orchestration with Durable Execution
Summary <br />In this episode Preeti Somal, EVP of Engineering at Temporal, talks about the durable execution model and how it reshapes the way teams build reliable, stateful systems for data and AI. She explores Temporal’s code‑first programming model—workflows, activities, ... Show More
51m 46s
Nov 9
The AI Data Paradox: High Trust in Models, Low Trust in Data
Summary<br />In this episode of the Data Engineering Podcast Ariel Pohoryles, head of product marketing for Boomi's data management offerings, talks about a recent survey of 300 data leaders on how organizations are investing in data to scale AI. He shares a paradox uncovered in ... Show More
51m 35s
Mar 2022
Mining the Golden Age of Data with Tableau’s CEO & President Mark Nelson
<p><a href="https://www.linkedin.com/in/markthomasnelson/">Mark Nelson</a> is the President and CEO of <a href="https://www.tableau.com/">Tableau</a>, a company dedicated to democratizing analytics and putting data back in the hands of consumers. But while this digital pioneer ma ... Show More
36m 32s
Feb 2023
Shorten the distance between production data and insight
<p>Modern networked applications generate a lot of data, and every business wants to make the most of that data. Most of the time, that means moving production data through some transformation process to get it ready for the analytics process. But what if you could have in-app an ... Show More
20m 27s
Mar 2022
Bayesian Machine Learning with Ravin Kumar (Ep. 191)
<p>This is one episode where passion for math, statistics and computers are merged.
I have a very interesting conversation with Ravin, data scientist at Google where he uses data to inform decisions.</p>
<p>He has previously worked at Sweetgreen, designing systems that would b ... Show More
31m 12s
May 2024
Deepthi Sigireddi on Distributed Database Architecture in the Cloud Native Era
In this podcast, Vitess CNCF project technical lead Deepthi Sigireddi discusses the architecture of cloud native distributed databases, sharding, replication, and failover. She also talks about what DB developers should consider when choosing distributed databases.
Read a transcr ... Show More
37m 24s
Nov 2021
Time Plus Data Equals Efficiency with Paul Dix, the Founder and CTO of InfluxData and the Creator of InfluxDB
<p>If the topic of databases is brought up to certain people, their eyes may gloss over. But if that happened, that would be because they just don’t know the awesome power of databases. Data can be valuable but only if it is contextualized, and time is an extremely relevant aspec ... Show More
36m 4s
Oct 2021
On Graph Databases | The Backend Engineering Show
<p>I get a lot of emails asking me to talk about graph databases, so I want to start researching them, but I wanted to give you guys the framework of how I think about any databases to defuse any “magic” that might be there.</p>
<p>In this video, I discuss what constrains a datab ... Show More
22m 27s
Jun 2023
Welcome to the Data Driven Podcast -- Benjamin Shapiro // I Hear Everything
Welcome to the Data Driven Podcast, where we dive deep into the art and science of data storytelling. Our mission is to help professionals from all backgrounds develop the skills needed to transform complex data into compelling narratives that drive clear business direction and r ... Show More
15m 9s